1. Suppose f is a real valued function on \mathbb{R} , which satisfies. $\lim_{h \to 0} f(x+h) - f(x-h) = 0.$

for every XER. Does this imply that f is continuous ?

<u>Sol'n:</u> No. For example $f(x) = \begin{cases} 1 & x=0 \\ 0 & x\neq0 \end{cases}$, this function is not continuous at x=0.

In general, if $E \subset R$ is a discrete set, i.e. the limit set E' is empty, then for any function $g: E \rightarrow R \setminus \{0\}$ function $f(x) = \begin{cases} g(x) & x \in E \\ 0 & x \notin E \end{cases}$ is not continuous, and satisfies $\lim_{h \to 0} f(x+h) - f(x-h) = 0$.

2. If $f: X \to Y$ is a continuous mapping from a metric space Xto a metric space Y, prove that $f(E) \subset \overline{f(E)}$ for every set $E \subset X$. Show that, by an example, that f(E) can be a proper subset.

$$Pf$$
: For any $P \in \overline{E}$, there exists a seq of points (Pn) with
 $Pn \in E$, such that $\lim_{n \to \infty} Pn = P$. Hence, by continuity of f .

$$f(p) = \lim_{n} f(p_n) \in \overline{f(E)}$$
. #

·furthermore, $f^{-1}(\overline{f(E)}) \supset f^{-1}(\overline{f(E)}) \supset E$.

Hence, condition (*) is setisfied.

Example. that the inclusion is proper: $X = (0,1), \quad Y = \mathbb{R}, \quad f: X \rightarrow Y$ the inclusion map. take $E = (0,1), \quad Hen$ the closure of E in X is E itself. The closure of f(E) in Y is $E^{0,1]}$.

Here is another example:

$$f: \mathbb{R} \rightarrow \mathbb{R}$$
. $f(x) = e^{x}$.
Let $E = \mathbb{R}$, then $f(\mathbb{R}) = (0, \infty)$.
 $f(\overline{E}) = f(\mathbb{R}) = (0, \infty)$., $\overline{f(\mathbb{R})} = [0, \infty)$.

#4 Let f, g be continuous map from X to Y. Suppose there is a dense subset $E \subset X$, s.t. $f|_E = g|_E$. Show that f = g.

$$\begin{array}{rcl} \underbrace{Pf:} & For any & x \in X, & \text{there exist a seque (Xn) in E,} \\ & & & & & & \\ & & & & & & \\$$

#6: Suppose
$$f: E \rightarrow Y$$
 is a map, and let
 $\Gamma_f = \{ (x, f(n)) \mid x \in E_3^2 \subset E \times Y \}$
be the graph of f . Suppose E is compact. Then,
 f is continuous \Leftrightarrow Γ_f is compact.
We give l proofs.
 $Pf # : F : E \rightarrow E \times Y$ be given by $x \mapsto (x, f(x))$.
then Γ_f is the image of $F(E)$. Since f is continuous,

hence F is continuous. Since E is compact and F is continuous, hence F(E) is compact. That is, If is compact.

We need to prove that, for any open subset VCY, the preimaage f'(V) is open. Or equivalents, for any closed subset K < Y, the preimage f⁻¹(K) is closed. Consider the projection maps $\pi_Y: E \times Y \to Y$, $\pi_E: E \times Y \to E$, they are all continuous. Then

$$f'(K) = \pi_E \left(\Gamma_f \cap \pi_r'(K) \right)$$

We see TTr'(K) is closed, and Γf is compact, hence $TTr'(K) \cap \Gamma f$ is compact, and its image under TTE is also compact. Thus f'(K) is compact, hence closed.

We need to prove that, for any sequence
$$\chi_n \rightarrow \chi$$

in E, we have $f(\chi_n) \rightarrow f(\chi)$. Suppose not, then $\exists z \ge 0$.
s.t. we have a subsequence. (χ_{n_K}) , s.t. $|f(\chi_{n_K}) - f(\chi)| \ge 2$.
Replace (χ_n) by (χ_{n_K}) , we may assume that $|f(\chi_n) - f(\chi)| \ge 2$.
 $\forall n$. Then consider the seq in the graph
 $f(\chi_n, f(\chi_n))$. By compactness of Γ_f , there is a subseq
such that $(\chi_{n_K}, f(\chi_n)) \rightarrow (\chi_0, \chi_0)$. Hence,
 $\lim_{K} \chi_{n_K} = \chi_0$, and $\lim_{K} f(\chi_{n_K}) = \Im_0$. Since (χ_{n_K}) is
a subseq of (χ_n) , and (χ_n) converges to χ , we have $\chi_0 = \chi$.
Since $|f(\chi_{n_K}) - f(\chi_0)| \ge 2$, $\forall k$, we have $|Y_0 - f(\chi_0)| \ge 2$.
However, since $(\chi_0, \chi_0) \in \Gamma_f$, hence $\mathcal{Y}_0 = f(\chi_0) = f(\chi)$.
Thus, we have a constradiction.

Prove that :
$$\cdot$$
 f is bounded on \mathbb{R}^2
 \cdot g is unbounded on every norm of (0,0)
 \cdot f is not continuous at (0,0).
 \cdot f, g are continuous on every line through origin.
Pf: \cdot for a 70, b70, we have $a^2+b^2 = 2ab$,
hence $|\mathcal{H}\mathcal{Y}^2| \leq \frac{1}{2}(|\mathbf{x}|^2 + |\mathcal{Y}|^4)$. Thus, if $(\mathbf{x}, \mathbf{y}) \neq (0,0)$,
then $|f(\mathbf{x}, \mathbf{y})| \leq \frac{\frac{1}{2}(|\mathbf{x}|^2 + |\mathcal{Y}|^4)}{\mathbf{x}^2 + \mathbf{y}^4} \leq \frac{1}{2}$. (note that $\mathbf{x}^2 \neq 0$, $\mathbf{y}^4 \neq 0$.)
and $f(0,0) = 10$. Hence
 $|f(\mathbf{x}, \mathbf{y})| \leq \frac{1}{2} \quad \forall (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2$

* For any nobed U of (0,0), there exists an 1>2>0,
such that
$$(-\Sigma,\Sigma) \times (-\Sigma,\Sigma) \subset U$$
. Hence, for small
enough t, e.g. $|t| < \Sigma$, we have $Hl^3 < \Sigma$, and
 $(t^3,t) \in (-\Sigma,\Sigma) \times (-\Sigma,\Sigma) \subset U$.
If $0 < |t| < \Sigma$, then
 $g(t^3,t) = \frac{t^3 \cdot t^2}{(t^3)^2 + t^6} = \frac{t^5}{2t^6} = \frac{1}{2t}$.
Hence, as $t \rightarrow 0t$, $g(t^3,t) \rightarrow t0$.

• Consider a sequence of points (x, y), that converges to (0,0), such that the ratio $\frac{x^2}{y_4}$ is constants, e.g. $(\chi_n, y_n) = (\frac{c}{h^2}, \frac{1}{h})$

then,
$$f(X_n, Y_n) = \frac{(f_n) (f_n)^2}{(f_n)^2 + (f_n)^4} = \frac{c}{1 + c^2}$$
. Hence, for different
value of C, the limit $\lim_{n \to \infty} f(X_n, y_n)$ is different. Thus,
 $f(Y,y)$ is not continuous at (0,0).

• If the line is the y-axis, i.e. x=0, then.

$$f(0,y) = \frac{0}{0+y^{4}} = 0. \qquad y \neq 0.$$

$$f(0,0) = 0.$$
Hence $f(0,y)$ is continuous.
If the line is of slope $y = kx$, then, we have $f(x, kx) = \frac{x \cdot (kx)^{2}}{x^{2} + (kx)^{4}} = \frac{kx}{1 + k^{4} \cdot x^{2}}$

$$\lim_{x \to 0} f(x, kx) = \frac{\lim_{x \to 0} kx}{\lim_{x \to 0} kx} = \frac{0}{1} = 0. = f(0,0)$$

Hence, the restriction of
$$f(x,y)$$
 on the line $y=kx$
is continuous.

#18 Every rational
$$x$$
 can be written uniquely as m/n ,
where, $m,n \in \mathbb{X}$. $n \ge 0$. and m,n are coprime.
When $x \ge 0$, take $n \ge 1$. Consider the function
 $f(x) \ge \begin{cases} 2/n & x = m/n \\ 0 & x = m/n \end{cases}$

Show that f is continuous at every irrational point.

 $\begin{array}{rcl} A_{N} &= & \mathbb{Z} \quad \bigcup \ \frac{1}{2} \ \mathbb{Z} \quad \bigcup \ \cdots \quad \bigcup \ \frac{1}{N} \ \mathbb{Z} \,. \\ \text{where} & \begin{array}{rcl} \frac{1}{n} \ \mathbb{Z} \,= & \left\{ \begin{array}{rcl} m/n \end{array} \right| & m \in \mathbb{Z} \ \mathbb{Z} \,. & \text{Each} & \frac{1}{n} \ \mathbb{Z} \,. & \text{is a closed} \\ \text{subset, hence} & A_{N} \quad \text{is a closed subset. If } \ \mathbb{Y} \in \mathbb{R} \setminus A_{N} \,, \\ \text{then} & \mathbb{O} \leq f(\mathbb{Y}) < \frac{1}{N} \,. & \text{If } \ \mathbb{X}_{0} \in \mathbb{R} \setminus A_{N} \,, & \text{then since } \ \mathbb{R} \setminus A_{N} \, \text{ is open,} \\ \text{we have} & S = 0 \quad \text{small enough, such that} \quad (X_{0} = S, \ X_{0} + S) \subset \mathbb{R} \setminus A_{N} \,. \\ \text{This is the desired } S. \quad \text{If } \ X_{0} \in A_{N} \,, & \text{then we claim that} \\ \forall \mathbb{X} \in A_{N} \setminus \{\mathbb{X}_{0}^{2}\}, \ |X_{0} - \mathbb{X}| > \frac{1}{N^{2}} \,. & \text{Indeed, } \ \left| \frac{m_{1}}{n_{1}} - \frac{m_{2}}{n_{2}} \right| = \frac{\left| m(n_{2} - m_{2}n_{1}) \right|}{\left| n(n_{2} \,]} \, > \, \frac{1}{n(n_{2} > N^{2})} \,. \\ \text{Hence, we may take} \quad S = \frac{1}{N^{2}} \,. \end{array}$

Note that, for the first part of \$18, since Xo is irrational, hence the case Xo E AN will not happen. And student may safely ignore this case.