Math 104	Midterm 1	Apr 1st, 2021 (A)
Name:		

- Please write your name, your section, the time slot that you take the exam on the first page of your submission.
- The midterm is 80 minutes. This is a closed book exam. You can take one cheatsheet with you. After the exam ends, you have 10 minutes to scan and upload your exam to gradescope.
- You can also use paper or iPad to write your exam. Latex is also OK.
- You can use theorems and results (in example and exercises) in the textbook, unless the problem requires you to prove from the definition.
- No calculator should be used. No discussion or searches on internet are allowed.
- If you have question during the exam, you may contact me using zoom direct message or via email.

Good Luck!

Question	Points	Score
1	20	
2	20	
3	15	
4	15	
5	15	
6	15	
Total	100	

1. (20 points, 4 points each) Topology on \mathbb{Q} . You may use the fact that the topology on \mathbb{Q} constructed from the induced metric on \mathbb{Q} as a subset of \mathbb{R} is equivalent to the induced topology on \mathbb{Q} as a subset of \mathbb{R} .

Answer the following question and justify your answer.

- (1) Is the set $(-1, 1) \cap \mathbb{Q}$ open in \mathbb{Q} ? Is it closed in \mathbb{Q} ?
- (2) Is the set $(-\sqrt{2}, \sqrt{2}) \cap \mathbb{Q}$ open in \mathbb{Q} ? Is it closed in \mathbb{Q} ?
- (3) Is the set $(0,2) \cap \mathbb{Q}$ connected?
- (4) Find a subset $K \subset \mathbb{Q}$, such that K is closed and bounded in \mathbb{Q} , but not compact.
- (5) Find a subset $K \subset \mathbb{Q}$, such that K is compact and K is an infinite set.
- 2. (20 points, 2 each) True or False. No justification is needed. Let $f: X \to Y$ be a continuous map between metric spaces. Let $A \subset X$ and $B \subset Y$.
 - (1) If A is open, then f(A) is open.
 - (2) If A is closed, then f(A) is closed.
 - (3) If A is bounded, then f(A) is bounded.
 - (4) If A is connected, then f(A) is connected.
 - (5) If A is compact, then f(A) is compact.
 - (6) If B is open, then $f^{-1}(B)$ is open.
 - (7) If B is closed, then $f^{-1}(B)$ is closed.
 - (8) If B is bounded, then $f^{-1}(B)$ is bounded.
 - (9) If B is connected, then $f^{-1}(B)$ is connected.
 - (10) If B is compact, then $f^{-1}(B)$ is compact.
- 3. (15 points) Prove that the finite union of compact subsets is compact. More precisely, let X be a metric space, and let K_1, \dots, K_n be any compact subsets of X. Show that $K_1 \cup \dots \cup K_n$ is a compact subset of X.
- 4. (15 points) Let $g : \mathbb{R} \to \mathbb{Q}$ be a continuous map. Prove that g is a constant map, i.e., there exists a constant $\alpha \in \mathbb{Q}$ such that $g(x) = \alpha$ for all $x \in \mathbb{R}$.
- 5. (15 points) Let $f : \mathbb{Q} \to \mathbb{R}$ be a continuous map. Is it true that one can always find a continuous map $g : \mathbb{R} \to \mathbb{R}$ extending f, namely, g(x) = f(x)for any $x \in \mathbb{Q}$? If true, prove it; if false, give a counter-example and prove that no such extension is possible.
- 6. (15 points) For each $N \in \mathbb{N}$, let $f_N(x) = \sum_{n=0}^N 3^{-n} \sin(2^n x + n)$ be a real valued function on \mathbb{R} . Prove that as $N \to \infty$, f_N converges uniformly to some real valued continuous function.