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. (20 points, 4 points each) Topology on Q. You may use the fact that the

topology on Q constructed from the induced metric on QQ as a subset of R is
equivalent to the induced topology on Q as a subset of R.

Answer the following question and justify your answer.

(1) Is the set (—1,1) NQ open in Q7 Is it closed in Q7  open . wet closed,

(2) Is the set (—v/2,v/2) NQ open in Q? Is it closed in Q7 ¢Pen oud cloced.

(3) Is the set (0,2) N Q connected? [(0,2) N B = ECO, Ny Vild,»HU Q1 , V‘\E:zzi‘g:)?
(4)

4) Find a subset K C Q, such that K is closed and bounded in Q, but not 2= {e,’\ N &L
compact.

(5) Find a subset K C Q, such that K is compact and K is an infinite set. K = YRV %,_r)\' lv\ éN}

. (20 points, 2 each) True or False. No justification is needed.

Let f: X = Y be a continuous map between metric spaces. Let A C X and
BCY.

(1) If A is open, then f(A) is open.

(2) If A is closed, then f(A) is closed.

(3) If A is bounded, then f(A) is bounded.

(4) If A is connected, then f(A) is connected.
(5) If A is compact, then f(A) is compact.

(6) If B is open, then f~!(B) is open.

(7) If B is closed, then f~!(B) is closed.

(8) If B is bounded, then f~!(B) is bounded.
(9) If B is connected, then f~1(B) is connected.

(10) If B is compact, then f~!(B) is compact.

. (15 points) Prove that the finite union of compact subsets is compact. More

precisely, let X be a metric space, and let K1, - - - , K,, be any compact subsets
of X. Show that K; U---U K, is a compact subset of X.

. (15 points) Let g : R — Q be a continuous map. Prove that g is a constant

map, i.e., there exists a constant @ € Q such that g(z) = « for all z € R.

. (15 points) Let f : @ — R be a continuous map. Is it true that one can

always find a continuous map g : R — R extending f, namely, g(z) = f(z)

for any x € Q7 If true, prove it; if false, give a counter-example and prove
that no such extension is possible.

. (15 points) For each N € N, let fnx(z) = ngzo 37"sin(2"x + n) be a real

valued function on R. Prove that as N — oo, fy converges uniformly to
some real valued continuous function.
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