1. (20 points, 4 points each) Topology on \mathbb{Q}. You may use the fact that the topology on \mathbb{Q} constructed from the induced metric on \mathbb{Q} as a subset of \mathbb{R} is equivalent to the induced topology on \mathbb{Q} as a subset of \mathbb{R}.
Answer the following question and justify your answer.
(1) Is the set $(-1,1) \cap \mathbb{Q}$ open in \mathbb{Q} ? Is it closed in \mathbb{Q} ? open, $n<t$ closed.
(2) Is the set $(-\sqrt{2}, \sqrt{2}) \cap \mathbb{Q}$ open in \mathbb{Q} ? Is it closed in \mathbb{Q} ? open and closed.
(3) Is the set $(0,2) \cap \mathbb{Q}$ connected? $(0,2) \cap \mathbb{Q}=[(0, \alpha) \cap \mathbb{Q}] \cup[(\alpha, 2) \cup \mathbb{Q}], \forall \alpha \in(0,2)$ irrational.
(4) Find a subset $K \subset \mathbb{Q}$, such that K is closed and bounded in \mathbb{Q}, but not $\mathcal{R}=[0,1] \cap \mathbb{Q}$ compact.
(5) Find a subset $K \subset \mathbb{Q}$, such that K is compact and K is an infinite set.

$$
K=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in N\right\}
$$

2. (20 points, 2 each) True or False. No justification is needed.

Let $f: X \rightarrow Y$ be a continuous map between metric spaces. Let $A \subset X$ and $B \subset Y$.

F (1) If A is open, then $f(A)$ is open.
F (2) If A is closed, then $f(A)$ is closed.
$F \quad(3)$ If A is bounded, then $f(A)$ is bounded.
$\top \quad$ (4) If A is connected, then $f(A)$ is connected.
T (5) If A is compact, then $f(A)$ is compact.
\top (6) If B is open, then $f^{-1}(B)$ is open.
$\top \quad(7)$ If B is closed, then $f^{-1}(B)$ is closed.
$F \quad$ (8) If B is bounded, then $f^{-1}(B)$ is bounded.
$F \quad(9)$ If B is connected, then $f^{-1}(B)$ is connected.
$F(10)$ If B is compact, then $f^{-1}(B)$ is compact.
3. (15 points) Prove that the finite union of compact subsets is compact. More precisely, let X be a metric space, and let K_{1}, \cdots, K_{n} be any compact subsets of X. Show that $K_{1} \cup \cdots \cup K_{n}$ is a compact subset of X.
4. (15 points) Let $g: \mathbb{R} \rightarrow \mathbb{Q}$ be a continuous map. Prove that g is a constant map, i.e., there exists a constant $\alpha \in \mathbb{Q}$ such that $g(x)=\alpha$ for all $x \in \mathbb{R}$.
5. (15 points) Let $f: \mathbb{Q} \rightarrow \mathbb{R}$ be a continuous map. Is it true that one can always find a continuous map $g: \mathbb{R} \rightarrow \mathbb{R}$ extending f, namely, $g(x)=f(x)$ for any $x \in \mathbb{Q}$? If true, prove it; if false, give a counter-example and prove that no such extension is possible.
6. (15 points) For each $N \in \mathbb{N}$, let $f_{N}(x)=\sum_{n=0}^{N} 3^{-n} \sin \left(2^{n} x+n\right)$ be a real valued function on \mathbb{R}. Prove that as $N \rightarrow \infty, f_{N}$ converges uniformly to some real valued continuous function.

1. (1) The set $(-1,1) \cap \mathbb{Q}$ is open in \mathbb{Q}, by definition of the induced topology. Or directly, we may check that $\forall \alpha \in(-1,1) \cap \mathbb{Q}$, we may choose $\delta=\min \{\alpha-1,1-\alpha\}$. and $B_{\delta(\alpha)} \subset(-1,1) \cap \mathbb{Q}$

It is not closed in \mathbb{Q}, since its closure in \mathbb{Q} includes the points $\{-1\}$. and $\{1\}$. For example, the sequence $\left(1-\frac{1}{n}\right)_{n \in \mathbb{N}}$ is a sequence in this set, and converges to $1 \in \mathbb{Q}$, but 1 is not in this set.
(2). $(-\sqrt{2}, \sqrt{2}) \cap \mathbb{Q}=[-\sqrt{2}, \sqrt{2}] \cap \mathbb{Q}$. Hence, by the induced topology on \mathbb{Q}, it is both open and closed.
(3). $(0,2) \cap \mathbb{Q}$ is not connected. In fact, we will prove that any subset $S \subset \mathbb{Q}$ consisting of more than 1 elements is disconnected. Suppose $\alpha, \beta \in S$., and $\alpha<\beta$, then we may take any $\gamma \in \mathbb{R} \backslash \mathbb{Q}$, s.t. $\alpha<\gamma<\beta$., and consider $S_{1}=S \cap(-\infty, \gamma)=S \cap(-\infty, \gamma]$. and $S_{2}=S \cap(\gamma,+\infty)=S \cap[\gamma,+\infty)$. Then S_{1} and S_{2} are both open in S, and non-empty $\left(\alpha \in S_{1}\right.$ and $\left.\beta \in S_{2}\right)$. and $S=S_{1} \cup S_{2}$, hence S is disconnected.
(4). $K=[0,1] \cap \mathbb{Q}$. It is closed and bounded in \mathbb{Q}. But K is not compact, since as a subset of \mathbb{R}, K
is not closed, heme K is not compact as a subset of \mathbb{R}. Since the notion of compactness does not depends on the ambient space, we say K is not compact.
${ }^{\left(x_{n}\right)}$
More concretely, we may pick a sequeme in $[0,1] \cap \mathbb{Q}$ convergent ${ }^{\text {in } \mathbb{R}}$ to some irrational number α. This sequeme. does not have a convergent subsequence in \mathbb{Q}, hence K is not sequentially compact.
(5) $K=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ is compact (as subset in \mathbb{R}. hence also as subsection \mathbb{Q}).
2. as above.

For statement about bounded set, consider

$$
f:(0, \infty) \rightarrow(0, \infty) \quad x \mapsto \frac{1}{x} .
$$

then $f(10,1)=(1, \infty)$ image of bounded set can be unbounded.

$$
f^{-1}((0,1))=(1, \infty) \quad \text { image of bounded set can be }
$$ unbounded.

pf:
3. Let $\left\{U_{\alpha}\right\}_{\alpha \in A}$ be a covering of $K_{1} \cup \cdots \cup K_{n}$. then it is also a covering for each K_{i}. By compactness of K_{i}, we can find finite subsets $A_{i} \subset A$, such that $K_{i} \subset \bigcup_{\alpha \in A_{i}} U_{\alpha}$. Let $\widetilde{A}=A_{1} \cup \cdots \cup A_{n}$., then \widetilde{A} is
a finite subset, and $K=\bigcup_{i=1}^{n} K_{i} \subset \bigcup_{i=1}^{n}\left(\bigcup_{\alpha \in A_{i}} U_{a}\right)$

$$
=\bigcup_{\alpha \in \widetilde{A}} U_{\alpha}
$$

Hence K is compact.
4. $P f$: Since \mathbb{R} is connected, f is continuous, heme $f(\mathbb{R})$ is connected in \mathbb{Q}.

Suffice to prove that the only connected subsets in \mathbb{Q} are of the form $\{\alpha\}$. This was proven in problem 1.3.
5. No. Take $f: \mathbb{Q} \rightarrow \mathbb{R}$ as following:

$$
f(x)=\left\{\begin{array}{rl}
-1 & x<\sqrt{2}, \\
& x \in \mathbb{Q} \\
1 & x>\sqrt{2}, \\
x \in \mathbb{Q}
\end{array}\right.
$$

To see f is continuous, we only need to check \mathbb{Q}, ϕ, $(-\infty, \sqrt{2}) \cap \mathbb{Q}$ and $(\sqrt{2},+\infty) \cap \mathbb{Q}$ are open subsets in \mathbb{Q}. since these are the only possible preimages $f^{-1}(E)$ for $E \subset \mathbb{R}$.

- Suppose there exists a continuous extension to \mathbb{R}, then the left limit at $\sqrt{2}$ and right limit
at $\sqrt{2}$ would be

$$
\begin{aligned}
& g(\sqrt{2}+)=f(\sqrt{2}+)=1 \\
& g(\sqrt{2}-)=f(\sqrt{2}-)=-1
\end{aligned}
$$

contradicting with the requirement that $g(\sqrt{2}-)=g(\sqrt{2}+)$. Hence, no continuous extension exists.
6. This holds by Weierstrass M-test. since
the summand $\left|3^{-n} \sin \left(n^{2} x+n\right)\right| \leqslant 3^{-n}$ and

$$
\sum_{n=0}^{\infty} 3^{-n}<\infty .
$$

And uniformly limit of continuous function

