1. (20 points, 4 points each) Topology on \mathbb{O} . You may use the fact that the topology on \mathbb{Q} constructed from the induced metric on \mathbb{Q} as a subset of \mathbb{R} is equivalent to the induced topology on \mathbb{Q} as a subset of \mathbb{R} .

Answer the following question and justify your answer.

- open, not clused. (1) Is the set $(-1,1) \cap \mathbb{Q}$ open in \mathbb{Q} ? Is it closed in \mathbb{Q} ?
- (2) Is the set $(-\sqrt{2},\sqrt{2}) \cap \mathbb{Q}$ open in \mathbb{Q} ? Is it closed in \mathbb{Q} ? Open and closed.
- (3) Is the set $(0,2) \cap \mathbb{Q}$ connected? $[o, v] \cap \mathbb{Q} = [(o, d) \cap \mathbb{Q}] \cup [(d, v) \cup \mathbb{Q}], \forall o \in (o, 2)$ (4) Find a subset $K \subset \mathbb{Q}$, such that K is closed and bounded in \mathbb{Q} , but not $\mathcal{R} = [o, 1] \cap \mathbb{Q}$ compact.
- K= 303 U 2 h | n ENZ (5) Find a subset $K \subset \mathbb{Q}$, such that K is compact and K is an infinite set.
- 2. (20 points, 2 each) True or False. No justification is needed. Let $f: X \to Y$ be a continuous map between metric spaces. Let $A \subset X$ and $B \subset Y$.
- (1) If A is open, then f(A) is open. F
- F (2) If A is closed, then f(A) is closed.
- (3) If A is bounded, then f(A) is bounded. F
- (4) If A is connected, then f(A) is connected. T
- T (5) If A is compact, then f(A) is compact.
- (6) If B is open, then $f^{-1}(B)$ is open. T
- (7) If B is closed, then $f^{-1}(B)$ is closed. Т
- (8) If B is bounded, then $f^{-1}(B)$ is bounded. F
- (9) If B is connected, then $f^{-1}(B)$ is connected. F
- \sqsubset (10) If B is compact, then $f^{-1}(B)$ is compact.
- 3. (15 points) Prove that the finite union of compact subsets is compact. More precisely, let X be a metric space, and let K_1, \dots, K_n be any compact subsets of X. Show that $K_1 \cup \cdots \cup K_n$ is a compact subset of X.
- 4. (15 points) Let $g: \mathbb{R} \to \mathbb{Q}$ be a continuous map. Prove that g is a constant map, i.e., there exists a constant $\alpha \in \mathbb{Q}$ such that $q(x) = \alpha$ for all $x \in \mathbb{R}$.
- 5. (15 points) Let $f : \mathbb{Q} \to \mathbb{R}$ be a continuous map. Is it true that one can always find a continuous map $g: \mathbb{R} \to \mathbb{R}$ extending f, namely, g(x) = f(x)for any $x \in \mathbb{Q}$? If true, prove it; if false, give a counter-example and prove that no such extension is possible.
- 6. (15 points) For each $N \in \mathbb{N}$, let $f_N(x) = \sum_{n=0}^N 3^{-n} \sin(2^n x + n)$ be a real valued function on \mathbb{R} . Prove that as $N \to \infty$, f_N converges uniformly to some real valued continuous function.

1. (1) The set (-1,1) A R is open in R, by definition of the induced topology. Or directly, we may check that VXE (-1,1) (Q, we may choose 8 = min {a-1, 1-a3. and $\mathbb{B}_{s}(\alpha) \subset (-|,1) \cap \mathbb{Q}.$ It is not closed in R, since its closure in R includes the points §-13 and \$13. For example, the sequence (1- n) nEW is a sequence in this set, and converges to 1 E Q, but 1 is not in this set. (2). (-JZ, JZ) (Q = [-JZ, JZ] (Q. Hence, by the induced topology on Q, it is both open and closed. (3). (0,2) A Q is not connected. In fact, we will prove that any subset SCR consisting of more than 1 elements is disconnected. Suppose a, BES., and a<B, then we may take any YERID, s.t. $\alpha < \gamma < \beta$, and consider $S_1 = S \cap (-\infty, \gamma) = S \cap (-\infty, \gamma)$. and $S_2 = S \cap (Y, +00) = S \cap [Y, +00)$. Then S, and Sz are both open in S, and non-empty (aES, and BESz), and S= SIUSZ, hence S is disconnected.

(4). $K = [0,1] \cap \mathbb{Q}$. It is closed and bounded in \mathbb{Q} . But K is not compact, since as a subset of \mathbb{R} , K

is not closed, here K is not compact as a subset of R. Since the notion of compactness does not depends on the ambient space, we say K is not compact. (Xn)_ More concretely, we may pick a sequence in [0,1] NQ convergent to some itrational number of. This sequence. does not have a convergent subsequence in Q, hence K B not sequentially compart. (5) K= 103 U 15/ INEN3 is compact (as subset in R. hence also as subsctin \mathbb{Q}). 2, as above. For statement about bounded set, consider $f: (0, \omega) \to (0, \omega) \qquad \chi \mapsto \frac{1}{\chi}.$ then $f((0, D) = (1, \infty)$ image of bounded set is unbounded. $f^{-1}((0,1)) = (1,\infty)$ image of bounded set can be unbounded. P-f; 3. Let Ellasaca be a covering of K.U....UKn. then it is also a covening for each Ki. By compactness of Ki, we can find finite subsets Ai CA, such that $K: \subset \bigcup_{k \in A_i} U_k$. Let $\widetilde{A} = A_1 \cup \cdots \cup A_n$, then \widetilde{A} is

a finite subset, and $K = \bigcup_{i=1}^{n} K_i \subset \bigcup_{i=1}^{n} \left(\bigcup_{d \in A_i} U_a \right)$ $= \bigcup_{\alpha \in \widetilde{A}} \bigcup_{\alpha}$ Hence K is compact. 4. Pf. Since IR is connected, f is continuous, heme f(R) is connected in Q. Suffice to prove that the only connected subsets in Q are of the form Exs. This was proven in problem 1.3. 5. No. • Take $f: Q \rightarrow R$ as following: $f(x) = \begin{cases} -1 & \chi < Jz, \chi \in Q \\ 1 & \chi > Jz, \chi \in Q \end{cases}$ To see f is continuous, we only need to check Q, p. (-P, JZ) (Q and (JZ, +P) (Q are open subsets in Q. since these are the only possible preimages f⁻¹(E) for ECR, · Suppose there exists a continuous extension to R, then the left limit at JZ and right limit

at
$$Jz$$
 would be
 $g(Jz+) = f(Sz+) = 1,$
 $g(Tz-) = f(Tz-) = -1.$
contradicting with the requirement that $g(Tz-) = g(Tz+)$.
Hence, no continuous extension exists.
6. This holds by Weierstress M -test. since
the summanl $|3^{-n} \sin(n^2x+n)| \leq 3^{-n}$ and
 $\frac{\Sigma}{2} 3^{-n} < \infty.$
And uniformly limit of continuous function