Name:

\qquad

- Please write your name, your section, the time slot that you take the exam on the first page of your submission.
- The final is 180 minutes. This is a closed book exam. You can take two cheatsheets (4 sided) with you. After the exam ends, you have 10 minutes to scan and upload your exam to gradescope.
- You can also use paper or iPad to write your exam. Latex is also OK.
- You can use theorems and results (in example and exercises) in the textbook, unless the problem requires you to prove from the definition.
- No calculator should be used. No discussion or searches on internet are allowed.
- If you have question during the exam, you may contact me using zoom direct message or via email.

Good Luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

1. True or False (no justification is needed) (2 points each)

- (1) Let $\left(x_{n}\right)$ be a sequence in $[0,1]$, then there is a subsequence of $\left(x_{n}\right)$ whose limit is $\inf \left\{x_{n} \mid n \in \mathbb{N}\right\}$.
(2) Let $\left(x_{n}\right),\left(y_{n}\right)$ be two bounded sequences of positive real numbers, then

$$
\limsup _{n \rightarrow \infty}\left(x_{n} y_{n}\right) \leq \limsup _{n \rightarrow \infty}\left(x_{n}\right) \limsup _{n \rightarrow \infty}\left(y_{n}\right)
$$

$F(3)$ If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $a \in \mathbb{R}$, then there is a $\delta>0$, such that f is continuous on $(a-\delta, a+\delta)$.
$\mathcal{F}(4)$ If $f:[0,1] \rightarrow \mathbb{R}$ is Riemann integrable, then the function $F(x)=$ $\int_{0}^{x} f(t) d t$ exists and $F^{\prime}(x)=f(x)$ for all $x \in(0,1)$.
$F(5)$ If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function, then for any $a \in \mathbb{R}$ and $x \in \mathbb{R}$, we have convergence

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(x)
$$

2. True or False? If true, give a proof, if false, give a counter-example (5 points each)
(a)
f is uniformly cont.
(a) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Then
$\forall \varepsilon>0, \exists \delta$ sot. if $|x-y|<\delta,|f(x)-f(y)|<\varepsilon$.
If $\frac{1}{n}<\delta$, then $\left|\sum_{k}(-1)^{k} f\left(\frac{k}{n}\right)\right| \leqslant \frac{n}{2} \cdot \varepsilon$. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n}(-1)^{k} f\left(\frac{k}{n}\right)=0$
(b) Let $f:(0, \infty) \rightarrow(0, \infty)$ be uniformly continuous. Then
(b) $e . g . \quad f(x)=e^{-x^{2} .} \quad \lim _{x \rightarrow \infty} \frac{f(x+1 / x)}{f(x)}=1$.

$$
\begin{array}{ll}
\frac{f\left(x+\frac{1}{x}\right)}{f(x)}=\frac{e^{-\left(x+\frac{1}{x}\right)^{2}}}{e^{-x^{2}}} & \begin{array}{ll}
\text { 3. Calculate and give your justifications. } \\
\text { (a) (3 points) }
\end{array} \\
& \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}, a>0
\end{array} \quad \text { L'Hopital. } \ln 9
$$

(c) (4 points) For any integer $k \geq 0$, calculate

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{1^{k}+3^{k}+\cdots(2 n-1)^{k}}{n^{k+1}}\right) \quad f(x)=x^{k} \\
& \frac{1}{n} \sum_{m=1}^{n}\left(\frac{2 m-1}{n}\right)^{k}=\frac{1}{2} \cdot \sum_{m=1}^{n} f\left(\frac{2 m-1}{n}\right) \cdot\left(\frac{2}{n}\right) \quad \ldots w_{2} \\
& \xrightarrow{h \rightarrow \infty} \frac{1}{2} \int_{0}^{2} f(x) \cdot d x \\
& =\left.\frac{1}{2} \frac{x^{k+1}}{k+1}\right|_{x=0} ^{x=2}=\frac{1}{2} \cdot \frac{2^{k+1}}{k+1}=\frac{2^{k}}{k+1}
\end{aligned}
$$

4. (10 points) Define the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ as follows:

$$
0<b_{1}<a_{1}, \quad a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}}
$$

Show that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ both converge to the same limit.
5. Find the radius of convergence of the following power series on \mathbb{R}
show $a_{n} \downarrow, b_{n} \uparrow$, bounded

$$
a_{n}>b_{n} \quad \forall n .
$$

Thus a_{n}, b_{n} converges.
Let $A=\lim a_{n}, B=\lim b_{n}$.

$$
A=\frac{A+B}{2} \Rightarrow A=B
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(2+(-1)^{n}\right)^{n} x^{n} \quad \lim _{\sup }\left[\left(2+(-1)^{n}\right)^{n}\right]^{\frac{1}{n}}=3 . \\
& \Rightarrow R=\frac{1}{3}
\end{aligned}
$$

6. (10 points) Show the following series of function converge uniformly on \mathbb{R}

$$
\begin{aligned}
& \text { ing series of function conver } \\
& \sum_{n=1}^{\infty} n^{2} x^{2} e^{-n^{2}|x|} \\
& \text { pus. Prove that, for any } x \\
& \left.\left.x_{n}\right)\right\} \\
& =\frac{1}{n}\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right)
\end{aligned}
$$

7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Prove that, for any $x_{1}, \cdots, x_{n} \in \mathbb{R}$, there

$$
\begin{aligned}
& \text { \#6. } \quad \sup \left(x^{2} e^{-|x|}\right)=M \\
& \quad n^{2} x^{2} e^{-n^{2}|x|}=\frac{1}{n^{2}}\left(n^{2} x\right)^{2} e^{-n^{2}|x|}
\end{aligned}
$$ exists x_{0}, such that

\#) Let x_{i} realize $\max \left\{f\left(x_{1}\right), \therefore, f\left(x_{n}\right)\right\}$
x_{j} realize $\min \{\cdots\} \quad f\left(x_{0}\right)=\frac{1}{n}\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right)$

$$
\leq \frac{1}{h^{2}} \cdot M
$$

$$
-\alpha \because \sum \frac{1}{h^{2}}<\infty
$$

then by intermedoute value the

$$
\therefore \text { by M- test } \cdots \cdot .
$$

8. Let (X, d) be a metric space and $p \in X$ is a fixed point. For any $u \in X$, we
$\exists X_{0}$ between
x_{i}, x_{j}, st.
$f\left(x_{0}\right)=\frac{1}{n}\left(f\left(x_{1}\right) \cdots f\left(x_{0}\right)\right.$.
9. Show that (5 points each)
(a) $x \geq \sin (x)$, for $x>0$
(b) $1-x^{2} / 2 \leq \cos (x)$, for $x>0$ (you may use result from (a))

Hint: Use mean value theorem.
define a function $f_{u}(x)=d(u, x)-d(p, x)$. Show that (5 points each)
(a) For any $u \in X$, the function f_{u} is bounded.
(b) For any $u, v \in X, d(u, v)=\sup _{x \in X}\left|f_{u}(x)-f_{v}(x)\right|$.

$$
\begin{aligned}
& d(u, x)-d(p, x) \leqslant d(u, p) \\
& d(p, x)-d(u, x) \leqslant d(u, p) \\
& \Rightarrow|d(u, x)-d(p, x)| \leqslant d(u, p)
\end{aligned}
$$

(b) $\quad\left|f_{u}(x)-f_{v}(x)\right| \leqslant d(u, v)$ equal sign can be achieved for $x=u$ or v.

$$
f^{\prime}(a)=\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}}
$$

\#9 (a)

$$
\begin{aligned}
f(x) & =x-\sin x, \\
f^{\prime}(x) & =1-\cos x . \\
\therefore & \because \forall x>0, \quad f^{\prime}(x)>0 \text {, and } f(0)=0 \\
\therefore & f(x)=\int_{0}^{x} f^{\prime}(t) d t>0 . \quad A x>0 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& g(x)=\cos (x)-\left(1-\frac{x^{2}}{2}\right), \quad 3 \\
& g^{\prime}(x)=-\sin x+x \quad \forall x>0 . \quad g^{\prime}(x)>0 \\
& \therefore \quad g(x)=\int_{0}^{x} g^{\prime}(t) d t \geqslant 0, \quad \forall x>0
\end{aligned}
$$

\#10 Since $f(x)$ is differentouble at $x=a$, thus

$$
h(x):=\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)
$$

converges to 0, as $x \rightarrow a . \quad f(x)=f(a)+f^{\prime}(a)(x-a)+h(x) .(x-a)$

$$
\begin{aligned}
\frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}} & =\frac{f(a)+f^{\prime}(a)\left(y_{n}-a\right)+h\left(y_{n}\right)\left(y_{n}-a\right)-\left[f(a)+f^{\prime}(a)\left(x_{n}-a\right)+h\left(x_{n}\right)\left(x_{n-a}\right)\right]}{y_{n}-x_{n}} \\
& =f^{\prime}(a)+h\left(y_{n}\right) \cdot \frac{y_{n}-a}{y_{n}-x_{n}}+h\left(x_{n}\right) \frac{a-x_{n}}{y_{n}-x_{n}}
\end{aligned}
$$

since $0<\frac{y_{n}-a}{y_{n}-x_{n}}<1$, and $0<\frac{a-x_{n}}{y_{n}-x_{n}}<1$, hence

$$
\lim _{n \rightarrow \infty} h\left(y_{n}\right) \cdot \frac{y_{n}-a}{y_{n}-x_{n}}=0, \quad \lim _{n \rightarrow \infty} h\left(x_{n}\right) \frac{a-x_{n}}{y_{n}-x_{n}}=0
$$

Thus $\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}}=f^{\prime}(a)$.

