Name:

\qquad

- The midterm is 80 minutes. This is a closed book exam. You can take one cheatsheet with you. After the exam ends, you have 10 minutes to scan and upload your exam to gradescope.
- You can also use paper or iPad to write your exam. Latex is also OK.
- Please write the time slot that you take the exam on the first page of your submission.
- You can use theorems and results (in example and exercises) in the textbook, unless the problem requires you to prove from the definition.
- No calculator should be used. No discussion or searches on internet are allowed.
- If you have question during the exam, you may contact me using zoom direct message or via email.

Good Luck!

Question	Points	Score
1	20	
2	20	
3	10	
4	10	
5	10	
6	15	
7	15	
Total	100	

1. (20 points, 4 points each) True or False? Please provide your reasoning (no rigorous proof is needed).
(1) Let $S \subset \mathbb{R}$ be a bounded subset. If S consists of only irrational numbers, then $\sup (S)$ is a irrational number.
(2) There are no rational roots for $x^{8}-x^{4}+x-1=0$.
(3) If a convergent sequence $\left(s_{n}\right)$ takes value 0 infinitely many times, then $\left(s_{n}\right)$ converges to 0 .
(4) Let $\left(s_{n}\right)$ be a sequence that enumerate all positive rational numbers of the form $n / 3^{k}$, where n and k are positive integers. Then for any real number $t \geq 0$, there exists a subsequence of $\left(s_{n}\right)$ that converges to t.
(5) Let $\left(s_{n}\right)$ be a sequence such that $\lim \sup \left(s_{n}\right)=0$, then there exists an $N>0$, such that for all $n>N, s_{n} \leq 0$.
2. (20 points, 5 points each) Compute the limits of the following sequences. Please provide intermediate steps and justifications.
(1) $\frac{7 n+3}{3 n+7}$
(2) $\frac{2^{n}+3^{n}}{3^{n}-2^{n}}$
(3) $\left(1 / 2^{n}+1 / 3^{n}\right)^{1 / n}$
(4) $\left(n^{2}+n\right)^{1 / n}$

Useful formula (1) for any positive number $a, \lim a^{1 / n}=1$. (2) $\lim n^{1 / n}=1$.
3. (10 points) Let s_{n} and t_{n} be Cauchy sequences in \mathbb{R}. Prove that $s_{n}+t_{n}$ is also a Cauchy sequence. You can only use the definitions to prove this statement.
4. (10 points) Let a_{n}, b_{n} be bounded sequences of real numbers. Prove that there exists a real number $t \in \mathbb{R}$, such that for any $\epsilon>0$, the set $\{n \in \mathbb{N} \mid$ $\left.\left|a_{n}-b_{n}-t\right|<\epsilon\right\}$ is infinite.
5. (10 points) Let $s_{n}=(-1)^{n} /(1+(1 / n))$. Find all subsequential limits of s_{n}. Please justify your results, i.e., give subsequences that converges to these subsequential limits, and show that there are no other possible subsequential limits.
6. (15 point) Let s_{n} be a sequence of positive numbers that converges to 0 . Show that there exists a subsequence $\left(s_{n_{k}}\right)_{k}$ of s_{n} satisfying the condition that $s_{n_{k+1}} \leq \frac{1}{2} s_{n_{k}}$ for all $k \geq 1$.
7. (15 point) For any real number x, let $\lfloor x\rfloor$ denote the largest integer $n \leq x$. For any $t \in \mathbb{R}$, show that the following sequence $t_{n}=2^{-n} \sum_{j=0}^{n}\left\lfloor 2^{j} t\right\rfloor$ is convergent, and find its limit.
Hint: You may use the result that $\lim n^{k} / a^{n}=0$ for all real number $a>1$, and real number $k \geq 0$. And you can use the formula $1+2+2^{2}+\cdots+2^{n}=$ $2^{n+1}-1$. Also note that $0 \leq x-\lfloor x\rfloor<1$.

