Math 104	Midterm 1	Feb 18, 2021 (B)
Name:		

- Please write your name, your section, the time slot that you take the exam on the first page of your submission.
- The midterm is 80 minutes. This is a closed book exam. You can take one cheatsheet with you. After the exam ends, you have 10 minutes to scan and upload your exam to gradescope.
- You can also use paper or iPad to write your exam. Latex is also OK.
- You can use theorems and results (in example and exercises) in the textbook, unless the problem requires you to prove from the definition.
- No calculator should be used. No discussion or searches on internet are allowed.
- If you have question during the exam, you may contact me using zoom direct message or via email.

Good Luck!

Question	Points	Score
1	20	
2	20	
3	10	
4	10	
5	10	
6	15	
7	15	
Total	100	

- 1. (20 points, 4 points each) True or False? Please provide your reasoning (no rigorous proof is needed).
 - (1) There are no rational roots for $x^6 x^4 + x 1 = 0$.
 - (2) Let $S \subset \mathbb{R}$ be any bounded subset such that S consists of only rational numbers, then $\sup(S)$ is a rational number.
 - (3) If a sequence (s_n) takes value 1 infinitely many times, then (s_n) converges to 1.
 - (4) Let (s_n) be a sequence that enumerate all positive rational numbers of the form $n/3^k$, where n and k are positive integers. Then for any real number $t \ge 0$, there exists a subsequence of (s_n) that converges to t.
 - (5) Let (s_n) be a sequence such that $\liminf(s_n) = 0$, then there exists an N > 0, such that for all n > N, $s_n \ge 0$.
- 2. (20 points, 5 points each) Compute the limits of the following sequences. Please provide intermediate steps and justifications.
 - (1) $\frac{5n+3}{3n+7}$
 - (2) $\frac{2^n+5^n}{5^n-2^n}$
 - (3) $(1/2^n + 1/5^n)^{1/n}$
 - (4) $(n^2 + 3n)^{1/n}$

Useful formula (1) for any positive number a, $\lim a^{1/n} = 1$. (2) $\lim n^{1/n} = 1$.

- 3. (10 points) Let s_n and t_n be Cauchy sequences in \mathbb{R} . Prove that $s_n t_n$ is also a Cauchy sequence. You can only use the definitions to prove this statement.
- 4. (10 points) Let a_n, b_n be bounded sequences of real numbers. Prove that there exists a real number $t \in \mathbb{R}$, such that for any $\epsilon > 0$, the set $\{n \in \mathbb{N} \mid |a_n b_n t| < \epsilon\}$ is infinite.
- 5. (10 points) Let $s_n = (-1)^{n+1}/(1 + (1/n))$. Find all subsequential limits of s_n . Please justify your results, i.e., give subsequences that converges to these subsequential limits, and show that there are no other possible subsequential limits.
- 6. (15 point) Let s_n be a sequence of positive numbers that is not bounded above. Show that there exists a subsequence $(s_{n_k})_k$ of s_n satisfying the condition that $s_{n_{k+1}} \ge 2s_{n_k}$ for all $k \ge 1$.
- 7. (15 point) For any real number x, let $\lfloor x \rfloor$ denote the largest integer $n \leq x$. For any $t \in \mathbb{R}$, show that the following sequence $t_n = 2^{-n} \sum_{j=0}^{n-1} \lfloor 2^j t \rfloor$ is convergent, and find its limit.

Hint: You may use the result that $\lim n^k/a^n = 0$ for all real number a > 1, and real number $k \ge 0$. And you can use the formula $1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$. Also note that $0 \le x - \lfloor x \rfloor < 1$.