There are 2 versions, with minor differences. I will do version- A first. then version B

1. (20 points, 4 points each) True or False? Please provide your reasoning (no rigorous proof is needed).
(1) Let $S \subset \mathbb{R}$ be a bounded subset. If S consists of only irrational numbers, then $\sup (S)$ is a irrational number.
(2) There are no rational roots for $x^{8}-x^{4}+x-1=0$.
(3) If a convergent sequence $\left(s_{n}\right)$ takes value 0 infinitely many times, then $\left(s_{n}\right)$ converges to 0 .
(4) Let $\left(s_{n}\right)$ be a sequence that enumerate all positive rational numbers of the form $n / 3^{k}$, where n and k are positive integers. Then for any real number $t \geq 0$, there exists a subsequence of $\left(s_{n}\right)$ that converges to t.
(5) Let $\left(s_{n}\right)$ be a sequence such that $\lim \sup \left(s_{n}\right)=0$, then there exists an $N>0$, such that for all $n>N, s_{n} \leq 0$.
2. (1) False. For example, let $S=\left\{\left.-\frac{\sqrt{2}}{n} \right\rvert\, n \in \mathbb{N}\right\}$. then $\sup (S)=0$.
Version B : False. Let $S=\{x \in \mathbb{Q} \mid x<\sqrt{2}\} . \quad \sup (S)=\sqrt{2}$,
(2) False. The set of rational roots for such monic polynomial are integers., and it divides the constant term. Hence, suffice to check if $+1,-1$ are roots. It turns out $x=1$ is root:
(3) True. (S_{n}) takes value 0 infinitely many times means. the set $A=\left\{n \in \mathbb{N} \mid S_{n}=0\right\}$ is infinite. (It doesn't mean $\left(S_{n}\right)$ is a constant seq.) Since one assumes $\left(S_{n}\right)$ is convergent, hence all subsequence has the same limit), In particular, the subseq $\left\{S_{n}\right\}_{n \in A}$, the constant zero subseq converge to α, hence $\alpha=0$.

If we don't assume S_{n} is convergent, the statement is false, e.g. $\quad S_{n}= \begin{cases}0 & n \text { even } \\ n & n \text { odd } .\end{cases}$

True.
(4) Let $A=\{r \mid r \in \mathbb{Q}$, and there exists $n, k \in \mathbb{N}$, such that $\left.r=\frac{n}{3^{k}}\right\}$.
The sequence $\left(S_{n}\right)$ enumerates the set A, i.e., every element in A appears in $\left(S_{n}\right)$ once and exactly once.
Now, for any real $t \geqslant 0$, one need to show that $\left\{n\left|\left|s_{n}-t\right|<\varepsilon\right\}\right.$ is infinite., this is equivalent of showing $\{a \dot{\in} A||a-t|<\varepsilon\}$ is infinite. Let M be a large enough positive integer, such that $3^{M} \cdot \varepsilon>1$, then for each $k>M$, we claim there exist an $m_{k} \in \mathbb{N}$, st. $3 X m_{k}$, and $\left|\frac{m_{k}}{3^{k}}-t\right| \leqslant \frac{1}{3^{k}}$. Indeed, consider $3^{k} \cdot t \in \mathbb{R}_{\geqslant 0}$, it lies in an interval $[\alpha, \alpha+1]$, with $\alpha \in \mathbb{Z}, \alpha \geqslant 0$. Then at least one of the end points, α or $\alpha+1$, is not divisible by 3. Let m_{k} equal to such an endpoint. Then,
$\left|m_{k}-3^{k} t\right| \leq 1$, hence $\left|\frac{m_{k}}{3^{k}}-t\right| \leqslant \frac{1}{3^{k}}$. this proves the claim. Thus, the set $\left\{\left.\frac{m_{k}}{3^{k}} \right\rvert\, k>M\right.$ integer $\}$ is an infinite set, satifying $\left|\frac{m_{k}}{3^{k}}-t\right|<\varepsilon$.

In exam, as long as you make the claim that, $\forall \varepsilon>0$, there are infinitely many distinct rational numbers of the form $\frac{n}{3^{k}}$ inside $(t-\varepsilon, t+\varepsilon)$, you get point.
(5) False. For example, $S_{n}=\frac{1}{n}, \lim \sup \delta_{n}=0$. See Ross $\$ 12$.
2. (20 points, 5 points each) Compute the limits of the following sequences.

Please provide intermediate steps and justifications.
(1) $\frac{7 n+3}{3 n+7}$
(2) $\frac{2^{n}+3^{n}}{3^{n}-2^{n}}$
(3) $\left(1 / 2^{n}+1 / 3^{n}\right)^{1 / n}$
(4) $\left(n^{2}+n\right)^{1 / n}$

Useful formula (1) for any positive number $a, \lim a^{1 / n}=1$. (2) $\lim n^{1 / n}=1$.
(1) $\lim \frac{7 n+3}{3 n+7}=\lim \frac{7+\frac{3}{n}}{3+\frac{7}{n}}=\frac{\lim \left(7+\frac{3}{n}\right)}{\lim \left(3+\frac{7}{n}\right)}=\frac{7}{3}$
(2). $\lim \frac{2^{n}+3^{n}}{3^{n}-2^{n}}=\lim \frac{1+\left(\frac{2}{3}\right)^{n}}{1-\left(\frac{2}{3}\right)^{n}}=\frac{\lim \left(1+\left(\frac{2}{3}\right)^{n}\right)}{\lim \left(1-\left(\frac{2}{3}\right)^{n}\right)}=\frac{1}{1}=1$.
(3) $\lim \left(\frac{1}{2^{n}}+\frac{1}{3^{n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left[\frac{1}{2^{n}} \cdot\left(1+\left(\frac{2}{3}\right)^{n}\right)\right]^{\frac{1}{n}}=\frac{1}{2} \lim \left(1+\left(\frac{2}{3}\right)^{n}\right)^{\frac{1}{n}}$

Sine for all $n \in \mathbb{N}, \quad 1 \leqslant 1+\left(\frac{2}{3}\right)^{n} \leqslant 2$, and
$\lim a^{\frac{1}{n}}=1 \quad \forall a>0$, we have

$$
1=\lim 1^{\frac{1}{n}} \leqslant \lim \left(1+\left(\frac{2}{3}\right)^{n}\right)^{\frac{1}{n}} \leqslant \lim 2^{\frac{1}{n}}=1
$$

Hence $\lim \left(1+\left(\frac{2}{3}\right)^{n}\right)^{\frac{1}{n}}=1$, and the original limit $=\frac{1}{2}$.
(4) $\lim \left(n^{2}+n\right)^{\frac{1}{n}}=\lim \left[n^{2}\left(1+\frac{1}{n}\right)\right]^{\frac{1}{n}}$

$$
=\lim \cdot n^{\frac{1}{n}} \cdot n^{\frac{1}{n}} \cdot\left(1+\frac{1}{n}\right)^{\frac{1}{n}}
$$

see (3) for the arcamat.
since $\lim n^{\frac{1}{n}}=1, \quad \lim \left(1+\frac{1}{n}\right)^{\frac{1}{n}}=1$
we get $\lim \left(n^{2}+n\right)^{\frac{1}{n}}=\lim n^{\frac{1}{n}} \cdot \lim n^{\frac{1}{n}} \cdot \lim \left(1+\frac{1}{n}\right)^{\frac{1}{n}}$

$$
=1.1 .1=1 .
$$

\#3 Prove that, if S_{n} and t_{n} are Candy, then $s_{n}+t_{n}$ is Cauchy.

Pf: We need to show that, $\forall \varepsilon>0, \exists N$, sit.

$$
\left|s_{n_{1}}+t_{n_{1}}-\left(s_{n_{2}}+t_{n_{2}}\right)\right|<\varepsilon \quad \forall n_{1}, n_{2}>N .
$$

Since S_{n} is Caudluy, hence for any $\varepsilon_{1}>0 \quad \exists N_{1}>0$, sit.

$$
\left|S_{n_{1}}-S_{n_{2}}\right|<\varepsilon_{1} \quad \forall n_{1}, n_{2}>N_{1}
$$

Similarly, sire t_{n} is Cauchy, $\Rightarrow \forall \varepsilon_{2}>0, \exists N_{2}>0$. sit. given $\varepsilon>0$,

$$
\left|t_{n_{1}}-t_{n_{2}}\right|<\varepsilon_{2}
$$

$$
\forall n_{1}, n_{2}>N_{2} .
$$

Now, choose $\varepsilon_{1}=\varepsilon_{2}=\frac{\varepsilon}{2}$, obtain the corresponding N_{1}, N_{2}. and set $N=\max \left\{N_{1}, N_{2}\right\}$. Indeed, $\forall n_{1}, n_{2}>N$

$$
\begin{aligned}
& \left|s_{n_{1}}+t_{n_{1}}-\left(s_{n_{2}}+t_{n_{2}}\right)\right|= \\
\leqslant & \left|\left(s_{n_{1}}-s_{n_{2}}\right)+\left(t_{n_{1}}-t_{n_{2}}\right)\right| \\
\leqslant & \left|S_{n_{1}}-S_{n_{2}}\right|+\left|t_{n_{1}}-t_{n_{2}}\right| . \\
& \leqslant \varepsilon_{1}+\varepsilon_{2}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . \\
& \ddots \because n_{1}, n_{2} \geqslant N \geqslant N_{1} \\
\text { triangle inequality. } & \text { and. } n_{1}, n_{2} \geqslant N \geqslant N_{2}
\end{aligned}
$$

Hence, such choice of N satisfies the requirement.
\#4 Let a_{n}, b_{n} be bounded sequame of real numbers, show that, $\exists \in \in \mathbb{R}$, sit. $\forall \varepsilon>0$, the sit $\left\{n|\quad| a_{n}-b_{n}-t \mid<\varepsilon\right\}$ is infinite.

Pf: Suffice to show that, there is a subsequence of $\left(a_{n}-b_{n}\right)$ that converges, then we can choose t to be the limit. of the subsequeme. Since $\left(a_{n}-b_{n}\right)$ is a bounded sequence, by Bolzano-Weierstrass theorem,
$\left(a_{n}-b_{n}\right)$ has convergent subseq.
\#5. Let $S_{n}=(-1)^{n} \frac{1}{1+\frac{1}{n}}$. Find all subsequential limits of $\left(s_{n}\right)$.

Pf: We claim that ± 1 are all the subseq limits. Indeed, $\left(S_{n}\right)_{n \text { even }}$ converges to +1 , and $\left(S_{n}\right)_{n \text { odd }}$ converges to -1 . Suppose $t \neq \pm 1$ is another subseq limit, then., $\exists \varepsilon>0$, s.t. $(t-2 \varepsilon, t+2 \varepsilon)$ does not contain $+1,-1$. In particular. $(-1-\varepsilon,-1+\varepsilon) \cap(t-\varepsilon, t+\varepsilon)=\phi$

$$
(+1-\varepsilon,+1+\varepsilon) \cap(t-\varepsilon, t+\varepsilon)=\phi
$$

Since (s_{n}) can be partitioned into two subsequemes, that converges to (-1) and $(+1)$ respectively. Hence, $\exists N>0$, s.t. $\forall n>N$.

$$
\operatorname{Sn} \in(-1-\varepsilon,-1+\varepsilon) \cup(1-\varepsilon, 1+\varepsilon) \text {. }
$$

$$
\Rightarrow \quad \sin \notin(t-\varepsilon, t+\varepsilon) \text {. }
$$

This shows, no subsequeme can converge to t. Hence, if $t \neq \pm 1$, then t is not a subseq limit of $\left(S_{n}\right)$.
\#6 Suppose S_{n} is a seq of positive numbers that converge to 0 , show that there exist a subseq satisfying the condition, that

$$
S_{n_{k+1}} \leqslant \frac{1}{2} S_{n_{k}} \quad \forall k \in \mathbb{N} .
$$

$P f:$ Let $n_{1}=1$. Assume $n_{1}<n_{2}<\cdots<n_{k}$ are constructed,
and satisfies the desired condition, we just need to show $\exists n_{k+1}>n_{k}$, sit. $\quad S_{n_{k+1}} \leqslant \frac{1}{2} S n_{k}$. Indeed, by setting $\varepsilon=\frac{1}{2} S_{n_{k}}$, we get an $N>0$, sit $\forall n>N$.

$$
\left|S_{n}-0\right|<\varepsilon=\frac{1}{2} S_{n_{k}} .
$$

Since S_{n} is positive, we get $0<S_{n}<\frac{1}{2} S_{n_{k}} \quad \forall n>N$.
Clearly, $N \geqslant n_{k}$, otherwise $n_{k}>N$, but $S_{n_{k}}>\frac{1}{2} S_{n_{k}}$. Hence, we may take $n_{k+1}=N+1$., and get $S n_{k+1}<\frac{1}{2} S_{n_{k}}$.
\#6(version B): Let $\left(S_{n}\right)$ be a seq of positive numbers that are not bounded above. Show that there is a sulsseq of $\left(S_{n}\right)$, sit. $\quad S n_{k+1} \geqslant 2 \cdot S_{n_{k}}$ $\forall k$.

Pf: Let $n_{1}=1$. Assume $n_{1}<n_{2}<\cdots<n_{k}$ are constructed, and satisfies $S_{n_{i+1}}>S_{n_{i}}$ for $i=1, \cdots, k-1$, we now construct n_{k+1}, sit, $n_{k+1}>n_{k}$ and $S_{n_{k+1}} \geqslant 2 \cdot S n_{k}$. Indeed, since $\left(S_{n}\right)$ is unbounded, heme $\forall M>0$, the set $\left\{n \mid S_{n}>M\right\}$ is infinite. Hence, the set $\left\{n \mid S_{n}>M\right\} \cap\left\{n \mid n>n_{k}\right\}$ is also infinite. Pick $M=2 n_{k}$, and pick n_{k+1} be any element in $\left\{n \mid S_{n}>2 n_{k}\right\} \cap\left\{n \mid n>n_{k}\right\}$, then n_{k+1} satisfies the requirement.
\#7 For any $t \in \mathbb{R}$, show that

$$
t_{n}=2^{-n} \sum_{j=0}^{n-1}\left\lfloor 2^{\bar{j}} t\right\rfloor
$$

Pf: $\quad \because \quad 0 \leqslant x-\lfloor x\rfloor<1 \quad \therefore \quad x-1<\lfloor x\rfloor \leqslant x$
Let $a_{n}=2^{-n} \sum_{j=0}^{n-1}\left(2^{j} t-1\right)$

$$
b_{n}=2^{-n} \sum_{j=0}^{n-1} 2^{j} t
$$

Then $\quad a_{n} \leqslant t_{n} \leqslant b_{n}$
Then

$$
\begin{aligned}
b_{n} & =t \cdot 2^{-n}\left(1+2+\cdots+2^{n-1}\right) \\
& =t \cdot 2^{-n}\left(2^{n}-1\right) \\
& =t\left(1-2^{-n}\right)
\end{aligned}
$$

and

$$
a_{n}=b_{n}-2^{-n} \cdot n
$$

Since $\lim b_{n}=\lim t\left(1-2^{-n}\right)=t$

$$
\lim a_{n}=\lim b_{n}-\lim 2^{-n} \cdot n=t-0=t
$$

Thus,

$$
t_{1}=\lim a_{n} \leqslant \liminf t_{n} \leqslant \limsup _{n .} \leqslant \lim b_{n}=t
$$

and we get $\liminf t_{n}=\limsup t_{n}=t \Rightarrow \lim t_{n}=t$.
In version B, we had $t_{n}=2^{-n} \sum_{j=0}^{n}\left[2^{j} t\right]$., and the limit is $2 t$.

