Chapter 3

Sequences

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.

Leonhard Euler (1707-1783)

- A sequence is a function whose domain is the set \mathbb{N} of natural numbers.
- A sequence $\left\{x_{n}\right\}$ is said to converge to a real number x, provided that for each $\varepsilon>0$ there exists an integer N such that $n \geq N$ implies that $\left|x_{n}-x\right|<\varepsilon$.
In this case we also say that $\left\{x_{n}\right\}$ converges to x, or x is the limit of $\left\{x_{n}\right\}$, and we write $x_{n} \rightarrow x$, or $\lim _{n \Rightarrow \infty} x_{n}=x$. If $\left\{x_{n}\right\}$ does not converge, it is said to diverge.
- A sequence $\left\{x_{n}\right\}$ is said to be bounded if the range $\left\{x_{n}: n \in \mathbb{N}\right\}$ is a bounded set, that is, if there exists $M \geq 0$ such that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
- Bolzano-Weierstrass Theorem: Every bounded sequence has a convergent subsequence.
- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence and for each $n \in \mathbb{N}$, set

$$
y_{n}=\sup \left\{x_{k}: k \geq n\right\} .
$$

The limit superior of $\left\{x_{n}\right\}$, denoted by $\lim \sup \left\{x_{n}\right\}$ or $\overline{\lim }\left\{x_{n}\right\}$, is defined by

$$
\overline{\lim }\left\{x_{n}\right\}=\inf \left\{y_{n}: n \in \mathbb{N}\right\}=\inf \left\{x: x=\sup \left\{x_{k}: k \geq n\right\} \text { for some } n \in \mathbb{N}\right\}
$$

provided that the quantity on the right exists. Likewise we define the limit inferior by

$$
\underline{\lim }\left\{x_{n}\right\}=\sup \left\{x: x=\inf \left\{x_{k}: k \geq n\right\} \text { for some } n \in \mathbb{N}\right\} .
$$

It is well known that if $\left\{x_{n}\right\}$ is a sequence, then $\left\{x_{n}\right\}$ has a limit if and only if the limit superior and the limit inferior exist and are equal.

- A sequence $\left\{x_{n}\right\}$ of real numbers is said to be a Cauchy sequence if for every $\varepsilon>0$, there is an integer N such that

$$
\left|x_{n}-x_{m}\right|<\varepsilon \text { if } n \geq N \text { and } m \geq N .
$$

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence and let $\left\{n_{k}\right\}_{k=1}^{\infty}$ be any sequence of natural numbers such that $n_{1}<n_{2}<n_{3}<\ldots$. The sequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ is called a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$.

Problem 3.1 Show that each bounded sequence of real numbers has a convergent subsequence.

Problem 3.2 Show that if $\left\{x_{n}\right\}$ converges to l, then $\left\{\left|x_{n}\right|\right\}$ converges to $|l|$. What about the converse?

Problem 3.3 Let C be a real number such that $|C|<1$. Show that $\lim _{n \rightarrow \infty} C^{n}=0$.

Problem 3.4 Let $\left\{x_{n}\right\}$ be a sequence such that $\left\{x_{2 n}\right\}$, $\left\{x_{2 n+1}\right\}$, and $\left\{x_{3 n}\right\}$ are convergent. Show that $\left\{x_{n}\right\}$ is convergent.

Problem 3.5 Let S be a nonempty subset of \mathbb{R} which is bounded above. Set $s=\sup S$. Show that there exists a sequence $\left\{x_{n}\right\}$ in S which converges to s.

Problem 3.6 Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two real sequences such that
(a) $x_{n} \leq y_{n}$ for all n;
(b) $\left\{x_{n}\right\}$ is increasing;
(c) $\left\{y_{n}\right\}$ is decreasing.

Show that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent and

$$
\lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty} y_{n}
$$

When do we have equality of the limits?

Problem 3.7 Show that $\left\{x_{n}\right\}$ defined by

$$
x_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

is divergent.

Problem 3.8 Show that $\left\{x_{n}\right\}$ defined by

$$
x_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln (n)
$$

is convergent.

Problem 3.9 Show that the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n}=\int_{1}^{n} \frac{\cos (t)}{t^{2}} d t
$$

is Cauchy.

Problem 3.10 Let $\left\{x_{n}\right\}$ be a sequence such that there exist $A>0$ and $C \in(0,1)$ for which

$$
\left|x_{n+1}-x_{n}\right| \leq A C^{n}
$$

for any $n \geq 1$. Show that $\left\{x_{n}\right\}$ is Cauchy. Is this conclusion still valid if we assume only

$$
\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|=0 ?
$$

Problem 3.11 Show that if a subsequence $\left\{x_{n_{k}}\right\}$ of a Cauchy sequence $\left\{x_{n}\right\}$ is convergent, then $\left\{x_{n}\right\}$ is convergent.

Problem 3.12 Discuss the convergence or divergence of

$$
x_{n}=\frac{n^{2}}{\sqrt{n^{6}+1}}+\frac{n^{2}}{\sqrt{n^{6}+2}}+\cdots+\frac{n^{2}}{\sqrt{n^{6}+n}} .
$$

Problem 3.13 Discuss the convergence or divergence of

$$
x_{n}=\frac{[\alpha]+[2 \alpha]+\cdots+[n \alpha]}{n^{2}},
$$

where $[x]$ denotes the greatest integer less than or equal to the real number x, and α is an arbitrary real number.

Problem 3.14 Discuss the convergence or divergence of

$$
x_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha^{n}+\beta^{n}}
$$

where α and β are real numbers such that $|\alpha| \neq|\beta|$.

Problem 3.15 (Cesaro Average) Let $\left\{x_{n}\right\}$ be a real sequence which converges to l. Show that the sequence

$$
y_{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

also converges to l. What about the converse? As an application of this, show that if $\left\{x_{n}\right\}$ is such that $\lim _{n \rightarrow \infty} x_{n+1}-x_{n}=l$, then

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{n}=l .
$$

Problem 3.16 Let $\left\{x_{n}\right\}$ be a real sequence with $x_{n} \neq 0$. Assume that

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=l
$$

Show that
(a) if $|l|<1$, then $\lim _{n \rightarrow \infty} x_{n}=0$;
(b) and if $|l|>1$, then $\left\{x_{n}\right\}$ is divergent.

What happens when $|l|=1$? As an application decide on convergence or divergence of

$$
x_{n}=\frac{\alpha^{n}}{n^{k}} \text { and } y_{n}=\frac{\alpha^{n}}{n!} .
$$

Problem 3.17 Given $x \geq 1$, show that

$$
\lim _{n \rightarrow \infty}(2 \sqrt[n]{x}-1)^{n}=x^{2}
$$

Problem 3.18 Show that

$$
\lim _{n \rightarrow \infty} \frac{(2 \sqrt[n]{n}-1)^{n}}{n^{2}}=1
$$

Problem 3.19 Let $\left\{x_{n}\right\}$ defined by

$$
x_{1}=1 \text { and } x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) .
$$

Show that $\left\{x_{n}\right\}$ is convergent and find its limit.

Problem 3.20 Let $\left\{x_{n}\right\}$ be a sequence defined by

$$
x_{1}=1, \text { and } x_{n+1}=\sqrt{x_{n}^{2}+\frac{1}{2^{n}}} .
$$

Show that $\left\{x_{n}\right\}$ is convergent.

Problem 3.21 For any $n \in \mathbb{N}$ set $I_{n}=\int_{0}^{\pi / 2} \cos ^{n}(t) d t$, known as Wallis integrals .

1. Show that $(n+2) I_{n+2}=(n+1) I_{n}$. Then use it to find explicitly $I_{2 n}$ and $I_{2 n+1}$.
2. Show that $\lim _{n \rightarrow \infty} \frac{I_{n+1}}{I_{n}}=1$.
3. Show that $\left\{(n+1) I_{n} I_{n+1}\right\}$ is a constant sequence. Then conclude that

$$
\lim _{n \rightarrow \infty} I_{n} \sqrt{2 n}=\sqrt{\pi} .
$$

Problem 3.22 Consider the sequence

$$
x_{n}=\frac{n!}{\sqrt{n}}\left(\frac{e}{n}\right)^{n}, n=1, \ldots .
$$

1. Show that $\left\{\ln \left(x_{n}\right)\right\}$ is convergent. Use this to show that $\left\{x_{n}\right\}$ is convergent.
2. Use Wallis integrals to find the limit of $\left\{x_{n}\right\}$.
3. Use 1. and 2. to prove the Stirling formula

$$
n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}
$$

when $n \rightarrow \infty$.

Problem 3.23 Find the limit superior and limit inferior of the sequence $\left\{x_{n}\right\}$, where

- $x_{n}=1+(-1)^{n}+\frac{1}{2^{n}}$
- $x_{n}=2^{n}$

Problem 3.24 Let $\left\{x_{n}\right\}$ be a bounded sequence. Prove there exists a subsequence of $\left\{x_{n}\right\}$ which converges to $\liminf _{n \rightarrow \infty} x_{n}$. Show that the same conclusion holds for $\limsup _{n \rightarrow \infty} x_{n}$.

Problem 3.25 Let $\left\{x_{n}\right\}$ be a sequence and let $\left\{x_{n_{k}}\right\}$ be any of its subsequences. Show that

$$
\liminf _{n \rightarrow \infty} x_{n} \leq \liminf _{n_{k} \rightarrow \infty} x_{n_{k}} \leq \limsup _{n_{k} \rightarrow \infty} x_{n_{k}} \leq \liminf _{n \rightarrow \infty} x_{n} .
$$

In particular, if $\left\{x_{n_{k}}\right\}$ is convergent, then

$$
\liminf _{n \rightarrow \infty} x_{n} \leq \lim _{n_{k} \rightarrow \infty} x_{n_{k}} \leq \limsup _{n \rightarrow \infty} x_{n} .
$$

Is the converse true? That is, for any l between $\liminf _{n \rightarrow \infty} x_{n}$ and $\limsup _{n \rightarrow \infty} x_{n}$, there exists a subsequence $\left\{x_{n_{k}}\right\}$ which converges to l.

Problem 3.26 If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are bounded real sequences, show that

$$
\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n} .
$$

Do we have equality?

Problem 3.27 If $x_{n}>0, n=1,2, \ldots$, show that

$$
\liminf _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{x_{n}} \leq \limsup _{n \rightarrow \infty} \sqrt[n]{x_{n}} \leq \limsup _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}
$$

Deduce that if $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}$ exists, then $\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}$ exists. What happened to the converse?

