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Solutions

Solution 3.1

Let (xn : n ∈ N) be a bounded sequence, say |xn| ≤ M for all n.

Let I0 = [−M,M ], a0 = −M, and b0 = M , so that I0 = [a0, b0] and I0 contains infinitely many
of the xn (in fact, all of them).

We construct inductively a sequence of intervals Ik = [ak, bk] such that Ik contains infinitely
many of the xn and bk − ak = 2M/2k. This certainly holds for k = 0.

Suppose it holds for some value of k. Then at least one of the intervals [ak, (ak + bk)/2] and
[(ak + bk)/2, bk] contains infinitely many of the xn. If the former, then let ak+1 = ak, bk+1 = (ak +
bk)/2. Otherwise, let ak+1 = (ak + bk)/2, bk+1 = bk. In either case, the interval Ik+1 = [ak+1, bk+1]
contains infinitely many of the xn, and

bk+1 − ak+1 =
1
2
(bk − ak) =

(
1
2

)k+1
× 2M.

This completes the inductive construction.

Clearly a0 ≤ a1 ≤ a2 ≤ · · · ≤ b2 ≤ b1 ≤ b0. Thus (an) is an increasing bounded sequence, so by
completeness has a limit, say x. Moreover since each bk is an upper bound for (an) and x is the
supremum, x ≤ bk for each k. Thus ak ≤ x ≤ bk for every k. In other words, x ∈ Ik for every k.

We now construct inductively a subsequence (xnk) of (xn) such that xnk ∈ Ik for every k. Let
xn0 = x0. Assuming xnk has been chosen, let nk+1 be the least n > nk such that xn ∈ Ik+1. Then
(xnk) is a subsequence of (xn), and xnk ∈ Ik for every k.

Since xnk and x both lie in the same interval Ik of length 2M/2k, it follows that

|xnk − x| ≤
(

1
2

)k

× 2M

and so |xnk − x| → 0 as n → ∞. Thus (xnk) is a convergent subsequence of (xn), as required.

Solution 3.2

Note that for any real numbers x, y ∈ R, we have
∣∣∣|x| − |y|

∣∣∣ ≤ |x − y| .

Since {xn} converges to l, then for any ε > 0, there exists n0 ≥ 1 such that for any n ≥ n0, we have

|xn − l| < ε .

Hence ∣∣∣|xn| − |l|
∣∣∣ < ε
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for any n ≥ n0. This obviously implies the desired conclusion. For the converse, take xn = (−1)n,
for n = 0, . . . . Then we have |xn| = 1 which means that {|xn|} converges to 1. But {xn} does not
converge. Note that if l = 0, then the converse is true.

Solution 3.3

If C = 0, then the conclusion is obvious. Assume first 0 < C < 1. Then the sequence {Cn}
is decreasing and bounded below by 0. So it has a limit L. Let us prove that L = 0. We have
Cn+1 = CCn so by passing to the limit we get L = CL which implies L = 0. If −1 < −C < 0, then
we use (−C)n = (−1)nCn and the fact that the product of a bounded sequence with a sequence
which converges to 0 also converges to 0 to get lim

n→∞
(−C)n = 0. Therefore, for any −1 < C < 1,

we have lim
n→∞

Cn = 0.

Solution 3.4

If {xn} is convergent, then all subsequences of {xn} are convergent and converge to the same limit.
Therefore, let us show that the three subsequences converge to the same limit. Write

lim
n→∞

x2n = α1, lim
n→∞

x2n+1 = α2, and lim
n→∞

x3n = α3 .

The sequence {x6n} is a subsequence of both sequences {x2n} and {x3n}. Hence {x6n} converges
and forces the following:

lim
n→∞

x6n = lim
n→∞

x2n = lim
n→∞

x3n

or α1 = α3. On the other hand, the sequence {x6n+3} is a subsequence of both sequences {x2n+1}
and {x3n}. Hence {x6n+3} converges and forces the following:

lim
n→∞

x6n+3 = lim
n→∞

x2n+1 = lim
n→∞

x3n

or α2 = α3. Hence α1 = α2 = α3. Let us write

lim
n→∞

x2n = lim
n→∞

x2n+1 = l

and let us prove that lim
n→∞

xn = l. Let ε > 0. There exist N0 ≥ 1 and N1 ≥ 1 such that

{
|x2n − l| < ε for all n ≥ N0,
|x2n+1 − l| < ε for all n ≥ N1.

Set N = max{2N0, 2N1 + 1}. Let n ≥ N . If n = 2k, then we have k ≥ N0 since n ≥ N ≥ 2N0.
Using the above inequalities we get |x2k − l| < ε or |xn − l| < ε. A similar argument when n is odd
will yield the same inequality. Therefore

|xn − l| < ε

for any n ≥ N . This completes the proof of our statement.
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Solution 3.5

By the characterization of the supremum, we know that for any ε > 0 there exists x ∈ S such that

s − ε < x ≤ s .

So for any n ≥ 1, there exists xn ∈ S such that

s − 1
n

< xn ≤ s .

Since
{

1
n

}
goes to 0, given ε > 0, there exists n0 ≥ 1 such that for any n ≥ n0 we have

1
n

< ε. So

for any n ≥ n0 we have

s − ε < s − 1
n

< xn ≤ s < s + ε ,

which implies
|xn − s| < ε ,

which translates into lim
n→∞

xn = s.

Solution 3.6

Since {yn} is decreasing, we have yn ≤ y1 for n ≥ 1. So for any n ≥ 1 we have xn ≤ yn ≤ y1. This
implies that {xn} is bounded above. Since it is increasing it converges. Similar argument shows
that {yn} is bounded below and therefore converges as well. From (a) we get the desired inequality
on the limits. In order to have the equality of the limits we must have lim

n→∞
yn − xn = 0. This

result is useful when dealing with nested intervals in R and alternating real series.

Solution 3.7

We have
x2n − xn =

1
n + 1

+
1

n + 2
+ · · · +

1
2n

for any n ≥ 1. So
1

n + n
+

1
n + n

+ · · · +
1
2n

≤ x2n − xn

or
1
2

≤ x2n − xn. This clearly implies that {xn} fails to be Cauchy. Therefore it diverges.

Solution 3.8

Though real functions will be handled in the next chapters, here we will use the integral definition
of the logarithm function. In particular, we have

ln(x) =
∫ x

1

1
t
dt .

In this case if 0 < a < b, then we have

b − a

b
≤
∫ b

a

1
t
dt ≤ b − a

a
.
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Since

ln(n) =
∫ n

1

1
t
dt =

n−1∑

k=1

∫ k+1

k

1
t
dt ,

we get

ln(n) ≤
n−1∑

k=1

k + 1 − k

k
= 1 +

1
2

+ · · · +
1

n − 1
.

Hence
xn = 1 +

1
2

+ · · · +
1
n

− ln(n) = 1 +
1
2

+ · · · +
1

n − 1
− ln(n) +

1
n

> 0 .

On the other hand, we have

xn+1 − xn =
1

n + 1
− ln(n + 1) + ln(n) =

1
n + 1

−
∫ n+1

n

1
t
dt < 0 .

These two inequalities imply that {xn} is decreasing and bounded below by 0. Therefore {xn} is
convergent. Its limit is known as the Euler constant.

Solution 3.9

For any natural integers n < m we have
∣∣∣∣
∫ m

n

cos(t)
t2

dt

∣∣∣∣ ≤
∫ m

n

| cos(t)|
t2

dt ≤
∫ m

n

1
t2

dt =
[
−1

t

]m

n

=
1
m

− 1
n

.

Since lim
n→∞

1
n

= 0, then for any ε > 0, there exists n0 ≥ 1 such that for any n ≥ n0 we have
1
n

< ε.
So for n, m ≥ n0, n ≤ m, we have

|xn − xm| =
∣∣∣∣
∫ m

n

cos(t)
t2

dt

∣∣∣∣ ≤
1
m

− 1
n

< ε ,

which shows that {xn} is a Cauchy sequence.

Solution 3.10

Let n ≥ 1 and h ≥ 1. We have

|xn+h − xn| =

∣∣∣∣∣

h−1∑

k=0

xn+k+1 − xn+k

∣∣∣∣∣ ≤
h−1∑

k=0

|xn+k+1 − xn+k| .

Our assumption on {xn} implies

|xn+h − xn| ≤
h−1∑

k=0

ACn+k = ACn 1 − Ch

1 − C
< A

Cn

1 − C
.

Since 0 < C < 1, lim
n→∞

Cn = 0. Hence

lim
n→∞

A
Cn

1 − C
= 0 .
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This will force {xn} to be Cauchy. The second part of the statement is not true. Indeed, take
xn =

√
n. Then we have

lim
n→∞

√
n + 1 −

√
n = lim

n→∞

1√
n + 1 +

√
n

= 0 .

But the sequence {xn} is divergent.

Solution 3.11

Set lim
nk→∞

xnk = L. Let us show that {xn} converges to L. Let ε > 0. Since {xn} is Cauchy, there

exists n0 ≥ 1 such that for any n, m ≥ n0 we have

|xn − xm| <
ε

2
.

Since lim
nk→∞

xnk = L, there exists k0 ≥ 1 such that for any k ≥ k0 we have

|xnk − L| <
ε

2
.

For k big enough to have nk ≥ n0 we get

|xn − L| ≤ |xn − xnk | + |xnk − L| <
ε

2
+
ε

2
= ε

for any n ≥ n0. This completes the proof.

Solution 3.12

Note that for any k = 1, . . . , n, we have

n2
√

n6 + n
≤ n2

√
n6 + k

≤ n2
√

n6
=

1
n

which implies

n
n2

√
n6 + n

≤ xn ≤ n
1
n

or
n3

√
n6 + n

≤ xn ≤ 1 .

Because
n3

√
n6 + n

=
n3

n3

√
1 +

1
n2

=
1√

1 +
1
n2

and lim
n→∞

1
n2 = 0, then lim

n→∞

n3
√

n6 + n
= 1. The Squeeze Theorem forces the conclusion

lim
n→∞

n2
√

n6 + 1
+

n2
√

n6 + 2
+ · · · +

n2
√

n6 + n
= 1 .
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Solution 3.13

By definition of the greatest integer function [·], we have

[x] ≤ x < [x] + 1

for any real number x. This will easily imply x − 1 < [x] ≤ x. So

(α− 1) + (2α− 1) + · · · + (nα− 1)
n2 <

[α] + [2α] + · · · + [nα]
n2 ≤ α+ 2α+ · · · + nα

n2

or
(1 + 2 + · · · + n)α− n

n2 <
[α] + [2α] + · · · + [nα]

n2 ≤ (1 + 2 + · · · + n)α
n2 .

The algebraic identity 1 + 2 + · · · + m =
m(m + 1)

2
for any natural number m ≥ 1 gives

n(n + 1)
2

α− n

n2 <
[α] + [2α] + · · · + [nα]

n2 ≤

n(n + 1)
2

α

n2

or
(n + 1)α

2n
− 1

n
<

[α] + [2α] + · · · + [nα]
n2 ≤ (n + 1)α

2n
.

Since
lim

n→∞

(n + 1)α
2n

− 1
n

=
α

2
and lim

n→∞

(n + 1)α
2n

=
α

2
,

the Squeeze Theorem implies lim
n→∞

xn =
α

2
.

Solution 3.14

We have two cases, either |α| < |β| or |α| > |β|. Assume first that |α| < |β|. Set r = α
β . Then

algebraic manipulation gives

xn =
rn − 1
rn + 1

.

Since |r| < 1, then lim
n→∞

rn = 0, and we have lim
n→∞

xn = −1. Finally, if |α| > |β|, then we use

αn − βn

αn + βn
= −β

n − αn

βn + αn

and the same argument given before will imply

lim
n→∞

xn = − lim
n→∞

βn − αn

βn + αn
= 1 .

Solution 3.15

Let ε > 0. Since lim
n→∞

xn = l, there exists N0 ≥ 1 such that for any n ≥ N0 we have

|xn − l| <
ε

2
.
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On the other hand, we have

yn − l =
x1 + x2 + · · · + xn

n
− l =

(x1 − l) + (x2 − l) + · · · + (xn − l)
n

or
yn − l =

(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)
n

+
(xN0 − l) + · · · + (xn − l)

n

for any n ≥ N0. Since

lim
n→∞

(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)
n

= 0.

Then, there exists N1 ≥ 1 such that
∣∣∣∣
(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)

n

∣∣∣∣ <
ε

2

for any n ≥ N1. Set N max{N0, N1}, then for any n ≥ N we have

|yn − l| ≤
∣∣∣∣
(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)

n

∣∣∣∣+
∣∣∣∣
(xN0 − l) + · · · + (xn − l)

n

∣∣∣∣

or
|yn − l| ≤

∣∣∣∣
(x1 − l) + (x2 − l) + · · · + (xN0−1 − l)

n

∣∣∣∣+
|xN0 − l| + · · · + |xn − l|

n

which implies

|yn − l| <
ε

2
+

n − N0

n

ε

2
< ε .

This completes the proof of our statement. For the converse take xn = (−1)n. Then we have

yn =






− 1
n

if n is odd,

0 if n is even.

Obviously this will imply that lim
n→∞

yn = 0 while {xn} is well known to be divergent. Finally, let
{xn} be a sequence such that lim

n→∞
xn+1 − xn = l. Set

yn =
(x2 − x1) + (x3 − x2) + · · · + (xn+1 − xn)

n
.

Then from the first part we have lim
n→∞

yn = l. But

yn =
xn+1 − x1

n

which implies xn+1 = nyn + x1. Hence

xn

n
=

n − 1
n

yn−1 +
x1

n
.

Since
lim

n→∞

n − 1
n

= 1 , lim
n→∞

yn = l , and lim
n→∞

x1

n
= 0
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we get
lim

n→∞

xn

n
= l .

Solution 3.16

Assume first that |l| < 1. Let ε =
1 − |l|

2
. Then we have ε > 0. Since

lim
n→∞

xn+1

xn
= l

we get

lim
n→∞

∣∣∣∣
xn+1

xn

∣∣∣∣ = |l| .

Thus there exists N0 ≥ 1 such that for any n ≥ N0
∣∣∣∣
|xn+1|
|xn| − |l|

∣∣∣∣ < ε

which implies

|l| − ε <
|xn+1|
|xn| < |l| + ε

for any n ≥ N0. By definition of ε we get

|xn+1|
|xn| <

|l| + 1
2

< 1 .

In particular, we have for any n ≥ N0

|xn+1| <

(
|l| + 1

2

)n−N0+1
|xN0 |.

Since lim
n→∞

(
|l| + 1

2

)n−N0+1
= 0, we get lim

n→∞
|xn| = 0 which obviously implies lim

n→∞
xn = 0. This

completes the proof of the first part. Now assume |l| > 1. Since again

lim
n→∞

∣∣∣∣
xn+1

xn

∣∣∣∣ = |l| ,

the same proof as above gives the existence of N0 ≥ 1 such that
(

|l| + 1
2

)n−N0+1
|xN0 | < |xn+1|

for any n ≥ N0. And since lim
n→∞

(
|l| + 1

2

)n−N0+1
= ∞, we get lim

n→∞
|xn| = ∞. Hence the sequence

{xn} is not bounded and therefore is divergent. Finally if we assume |l| = 1, then it is possible
that {xn} may be convergent or divergent. For example, take xn = nα, then we have l = 1. But
the sequence only converges if α ≤ 0, otherwise it diverges. For the sequences

xn =
αn

nk
and yn =

αn

n!
,
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we have
xn+1

xn
= α

(
n

n + 1

)k

and
yn+1

yn
= α

n!
(n + 1)!

= α
1

n + 1
.

Hence
lim

n→∞

xn+1

xn
= α and lim

n→∞

yn+1

yn
= 0 .

In particular, we have 




lim
n→∞

xn = 0 if |α| < 1,

{xn} is divergent if |α| > 1.

And if |α| = 1, then the sequence in question is
{

1
nk

}
or
{

(−1)n

nk

}
which is easy to conclude. For

the sequence {yn} we have lim
n→∞

yn = 0 regardless of the value of α.

Solution 3.17

Without loss of generality, we may assume 1 < x. First note that

0 <
(

n
√

x − 1
)2

= n
√

x2 − 2 n
√

x + 1 ,

which implies 2 n
√

x − 1 <
n
√

x2. Hence
(
2 n
√

x − 1
)n

<
(

n
√

x2
)n

= x2 .

On the other hand, we have

(
2 n
√

x − 1
)n

= x2
(

2 n
√

x − 1
n
√

x2

)n

= x2
(

2
n
√

x
− 1

n
√

x2

)n

= x2

(
1 −

(
1 − 1

n
√

x

)2
)n

.

Since (1 − h)n ≥ 1 − nh, for any h ≥ 0 and n ≥ 1 we get
(

1 −
(

1 − 1
n
√

x

)2
)n

≥ 1 − n

(
1 − 1

n
√

x

)2
,

and
x =

(
n
√

x − 1 + 1
)n

≥ 1 + n
(

n
√

x − 1
)

> n
(

n
√

x − 1
)

,

which implies
(

n
√

x − 1
)2

<
x2

n2 .

Hence
(
2 n
√

x − 1
)n

≥ x2

(
1 − n

(
1 − 1

n
√

x

)2
)

= x2
(

1 − n
( n
√

x − 1)2
n
√

x2

)
,

or (
2 n
√

x − 1
)n

> x2
(

1 − x2

n
n
√

x2

)
.
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Putting all the inequalities together we get

x2
(

1 − x2

n
n
√

x2

)
<
(
2 n
√

x − 1
)n

< x2 .

The Squeeze Theorem will then imply

lim
n→∞

(
2 n
√

x − 1
)n

= x2 ,

since

lim
n→∞

x2
(

1 − x2

n
n
√

x2

)
= x2 .

Solution 3.18

In the previous problem we showed

x2



1 − n

(
n
√

x − 1
)2

n
√

x2



 <
(
2 n
√

x − 1
)n

< x2 ,

for any x > 1 and n ≥ 1. Take x = n, we get

n2



1 − n

(
n
√

n − 1
)2

n
√

n2



 ≤
(
2 n
√

n − 1
)n

≤ n2 ,

which implies

1 − n

(
n
√

n − 1
)2

n
√

n2
≤

(
2 n
√

n − 1
)n

n2 ≤ 1 .

In order to complete the proof of our statement we only need to show

lim
n→∞

n

(
n
√

n − 1
)2

n
√

n2
= 0 .

Note that for x ∈ [0, 1] we have 0 ≤ ex − 1 ≤ 3x. Hence

0 ≤ n
√

n − 1 = e

ln(n)
n − 1 ≤ 3

ln(n)
n

,

because ln(n) ≤ n for n ≥ 1. So

0 ≤ n
(

n
√

n − 1
)2

≤ n9
ln(n)2

n2 = 9
ln2(n)

n
.

Since lim
n→∞

ln2(n)
n

= 0, we conclude that

lim
n→∞

n
(

n
√

n − 1
)2

= 0 ,
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which yields

lim
n→∞

n

(
n
√

n − 1
)2

n
√

n2
= 0 .

Solution 3.19

Let us first show by induction that 0 ≤ xn and 1 ≤ x2
n ≤ 2. Obviously we have 0 ≤ 1 and

1 ≤ 12 ≤ 2. Assume that 0 ≤ xn and 1 ≤ x2
n ≤ 2. Then by the definition of xn+1 we obtain easily

0 ≤ xn+1. On the other hand, we have

x2
n+1 =

1
4

(
x2

n + 4 +
4
x2

n

)
=

1
4

(
x2

n +
4
x2

n

)
+ 1 .

Since (2 − xn)2 = 4 − 4x2
n + x4

n ≥ 0 we get
x4

n + 4
4x2

n
≤ 1 or

1
4

(
x2

n +
4
x2

n

)
≤ 1. This will imply

x2
n+1 ≤ 1 + 1 = 2. So the induction argument gives the desired conclusion that is xn ≥ 0 and

1 ≤ x2
n ≤ 2, for any n ≥ 1. On the other hand, algebraic manipulations give

xn+1 − xn =
1
2

(
xn +

2
xn

)
− xn =

2 − x2
n

2xn

which implies xn+1 − xn ≥ 0 for any n ≥ 1. Hence {xn} is an increasing bounded sequence. So it
converges. Set lim

n→∞
xn = l. Then we have l ≥ 0 and 1 ≤ l2 ≤ 2. Since {xn+1} also converges to l,

we get

l =
1
2

(
l +

2
l

)
=

l2 + 2
2l

,

or 2l2 = l2 + 2, which gives l2 = 2 or l =
√

2. Note that the sequence {xn} is formed of rational
numbers and its limit is irrational. One may generalize this problem to the sequence

x1 = 1 and xn+1 =
1
2

(
xn +

α

xn

)

and show that {xn} converges to
√
α provided α ≥ 0.

Solution 3.20

Obviously the sequence {xn} is positive and since xn+1 =
√

x2
n + 1

2n ≥
√

x2
n = xn in other words,

the sequence {xn} is increasing. So in particular we have xn ≥ x1 = 1 for any n ≥ 1. Since

xn+1 − xn =
√

x2
n +

1
2n

− xn =

1
2n√

x2
n +

1
2n

+ xn

and √
x2

n +
1
2n

+ xn ≥
√

x2
n + xn ≥

√
1 + 1 = 2
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we get

0 ≤ xn+1 − xn =

1
2n√

x2
n +

1
2n

+ xn

≤ 1
2n+1 .

On the other hand, we have

xn+h − xn = (xn+h − xn+h−1) + (xn+h−1 − xn+h−2) + · · · + (xn+1 − xn)

so
xn+h − xn ≤ 1

2n+h
+

1
2n+h−1 + · · · +

1
2n+1 =

1
2n+1

(
1

2h−1 + · · · +
1
2

+ 1
)

which implies

xn+h − xn ≤ 1
2n+1




1 − 1

2h

1 − 1
2



 ≤ 1
2n

.

Since { 1
2n

} converges to 0, then for any ε > 0, there exists N0 ≥ 1 such that for any n ≥ N0,

we have
1
2n

< ε which implies xn+h − xn < ε for any n ≥ N0 and any h ≥ 1. This obviously
implies that {xn} is Cauchy. Therefore, {xn} is convergent. Note that if we are able to prove that
{xn} is bounded, then we will get again the same conclusion without the complicated algebraic
calculations.

Solution 3.21

1. One can easily show that I0 = π/2 and I1 = 1. For n ≥ 2, we use the integration by parts
technique to show

In+2 =
∫ π/2

0
cosn+1(t) cos(t)dt =

[
cosn+1(t) sin(t)

]π/2

0
+ (n + 1)

∫ π/2

0
cosn(t) sin2(t)dt,

which implies In+2 = (n + 1)
(
In − In+2

)
or

In+2 =
n + 1
n + 2

In.

Hence
I2n =

2n − 1
2n

· 2n − 3
2n − 2

· · · 1
2
I0 =

2n − 1
2n

· 2n − 3
2n − 2

· · · 1
2

· π
2

=
(2n)!π

22n+1(n!)2
,

and

I2n+1 =
2n

2n + 1
· 2n − 2
2n − 1

· · · 2
3
I1 =

2n

2n + 1
· 2n − 2
2n − 1

· · · 2
3

=
22n(n!)2

(2n + 1)!
·

2. Note that since 0 ≤ cosn+1(t) ≤ cosn(t), for any t ∈ [0,π/2], then In+1 ≤ In, i.e., {In} is
decreasing. In particular, we have In+2 ≤ In+1 ≤ In and since In > 0 we get

1 ≤ In+1

In+2
≤ In

In+2
=

n + 2
n + 1

·

Hence lim
n→∞

In+1

In
= 1.
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3. Since
(n + 2)In+1In+2 = (n + 1)InIn+1

we conclude that {(n + 1)InIn+1} is a constant sequence. Hence

(n + 1)InIn+1 = I0I1 =
π

2
,

which implies lim
n→∞

2nI2
n = lim

n→∞
2(n + 1)InIn+1 = π, or

lim
n→∞

In

√
2n =

√
π.

Solution 3.22

1. Note that xn > 0 for n ≥ 1. We have

ln(xn+1) − ln(xn) = ln
(

xn+1

xn

)
= ln

(
(n + 1)!

n!
·
√

n

n + 1
· e · nn

(n + 1)n+1

)

which leads to
ln(xn+1) − ln(xn) = 1 −

(
n +

1
2

)
ln
(

1 +
1
n

)
.

Note that we have
lim

n→∞
n2
(

ln(xn+1) − ln(xn)
)

=
1
12

·

Indeed, using the Taylor approximation of ln(1 + x) we get

ln
(

1 +
1
n

)
=

1
n

− 1
2n2 +

1
6n3 +

εn

n3

where {εn} goes to 0 when n → ∞. Hence

ln(xn+1) − ln(xn) = 1 −
(

n +
1
2

)(
1
n

− 1
2n2 +

1
6n3 +

εn

n3

)
= − 1

6n2 +
1

4n2 − εn

n2 − εn

2n3

which implies

lim
n→∞

n2
(

ln(xn+1) − ln(xn)
)

= −1
6

+
1
4

=
1
12

·

Since the series
∑

1/n2 is convergent, the limit test will force
∑

ln(xn+1) − ln(xn) to be
convergent. Hence ln(xn) is convergent which in turn will force {xn} to be convergent. Set
l = lim

n→∞
xn = eL, where L = lim

n→∞
ln(xn). In particular, we have l > 0.

2. From the first part, we get

n! ≈ l
(n

e

)n √
n, when n → ∞.

Using Wallis integrals (see Problem 3.21), In =
∫ π/2

0
cosn(t)dt, we know that lim

n→∞
In

√
2n =

√
π, or

In ≈
√

π

2n
, when n → ∞.
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Since I2n =
(2n)!π

22n+1(n!)2
, we get

√
π

4n
≈ (2n)!π

22n+1(n!)2
, when n → ∞,

which implies √
π

4n
≈ l(2n)2ne−2n

√
2n

22n(lnn e−n
√

n)2
π

2
, when n → ∞.

Easy algebraic manipulations will lead to l =
√

2π.

3. Putting all the above results together we get

n! ≈
(n

e

)n √
2πn, when n → ∞.

Solution 3.23

• Notice that for any fixed n, xn = 2 + 1
2n if n is even and xn = 1

2n if n is odd. Thus
yn = sup{xn : k ≥ n } = 2 + 1

2n if n is even and 2 + 1
2n+1 if n is odd. Hence

lim sup{xn} = inf{yn : n ∈ N } = 2.

A similar calculation yields lim inf{xn} = 0.

• Because {xn} is not bounded above, the limit superior does not exist. For the limit inferior,
consider zn = inf{xk : k ≥ n}. Clearly, zn = xn = 2n, since {xn} is monotone increasing
and zn diverges to ∞. Thus supremum over {zn : n ∈ N } does not exist, therefore the limit
inferior does not exist. Note that even though the sequence {xn} is bounded below, limit
inferior does not exist.

Solution 3.24

Since
lim inf
n→∞

−xn = − lim sup
n→∞

xn,

we will only prove the existence of a subsequence which converges to lim inf
n→∞

xn. It is clear that
lim inf
n→∞

xn = l ∈ R since {xn} is bounded below. For any ε > 0 there exists N ∈ N, such that for
any n ≥ N we have

l − ε < inf{xk; k ≥ n} ≤ l.

Set ε = 1, then there exists N1 ∈ N such that for any n ≥ N1 we have

l − 1 < inf{xk; k ≥ n} ≤ l.

By induction one will construct an increasing sequence of integers {Ni} ∈ N such that for any
n ≥ Ni we have

l − 1
i

< inf{xk; k ≥ n} ≤ l.
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In particular, we have l − 1/k < xNk ≤ l, which implies {xNk} → l.

Solution 3.25

Note that for any sequence {xn} we have lim inf
n→∞

xn ≤ lim sup
n→∞

xn. Since lim inf
n→∞

−xn = − lim sup
n→∞

xn,

we will only show that lim inf
n→∞

xn ≤ lim inf
nk→∞

xnk . By definition we have

inf{xk; k ≥ n} ≤ inf{xnk ;nk ≥ n}, n ∈ N.

Hence
inf{xk; k ≥ n′} ≤ sup

n∈N

(
inf{xnk ;nk ≥ n}

)
, n′ ∈ N,

or
sup
n′∈N

(
inf{xk; k ≥ n′}

)
≤ sup

n∈N

(
inf{xnk ;nk ≥ n}

)

which implies lim inf
n→∞

xn ≤ lim inf
nk→∞

xnk . Moreover if we assume that {xnk} is convergent, then we

have
lim inf
nk→∞

xnk = lim sup
nk→∞

xnk = lim
nk→∞

xnk ,

which implies lim inf
n→∞

xn ≤ lim
nk→∞

xnk ≤ lim sup
n→∞

xn. The converse is not true. Indeed, consider the

sequence {(−1)n}. Then we have lim inf
n→∞

(−1)n = −1 and lim sup
n→∞

(−1)n = 1. On other hand there

does not exist a subsequence which converges to 0.

Solution 3.26

For any N ∈ N, we have

xn + yn ≤ sup{xk; k ≥ N} + sup{yk; k ≥ N}, n ≥ N

which implies sup{xn + yn; n ≥ N} ≤ sup{xk; k ≥ N} + sup{yk; k ≥ N}. Hence

inf
N∈N

(
sup{xn + yn; n ≥ N}

)
≤ inf

N∈N

(
sup{xn; n ≥ N}

)
+ inf

N∈N

(
sup{yn; n ≥ N}

)
,

or lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn. The equality does not hold in general. Indeed, we

have lim sup
n→∞

(−1)n = 1, and lim sup
n→∞

(−1)n+1 = 1, but lim sup
n→∞

(−1)n + (−1)n+1 = 0.

Solution 3.27

Assume first that lim inf
n→∞

xn+1

xn
= l ∈ R. So for any ε > 0, there exists N ∈ N such that for any

n ≥ N , we have l − ε ≤ inf
n≥N

xn+1

xn
, which implies (l − ε)xn ≤ xn+1 for any n ≥ N . This clearly

implies (l − ε)n−NxN ≤ xn, for any n ≥ N . Hence

(l − ε)(n−N)/nx1/n
N ≤ x1/n

n .

Since (l − ε)(n−N)/nx1/n
N → (l − ε) when n → ∞, we get

l − ε ≤ lim inf
n→∞

x1/n
n .
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Since ε was arbitrarily positive, we get

lim inf
n→∞

xn+1

xn
≤ lim inf

n→∞
n
√

xn.

A similar proof will lead to
lim sup

n→∞
n
√

xn ≤ lim sup
n→∞

xn+1

xn
.

If {xn+1/xn} is convergent, then we have

lim inf
n→∞

xn+1

xn
= lim sup

n→∞

xn+1

xn
,

which obviously implies

lim inf
n→∞

n
√

xn = lim sup
n→∞

n
√

xn = lim
n→∞

xn+1

xn
= lim

n→∞
n
√

xn.

The converse is not true. Indeed, take xn = 2 + (−1)n, n ∈ N. It is easy to check that n
√

xn → 1
when n → ∞. But

lim inf
n→∞

xn+1

xn
=

1
3
, and lim sup

n→∞

xn+1

xn
= 3.


