## Solutions

## Solution 3.1

Let ( $x_{n}: n \in \mathbb{N}$ ) be a bounded sequence, say $\left|x_{n}\right| \leq M$ for all $n$.
Let $I_{0}=[-M, M], a_{0}=-M$, and $b_{0}=M$, so that $I_{0}=\left[a_{0}, b_{0}\right]$ and $I_{0}$ contains infinitely many of the $x_{n}$ (in fact, all of them).

We construct inductively a sequence of intervals $I_{k}=\left[a_{k}, b_{k}\right]$ such that $I_{k}$ contains infinitely many of the $x_{n}$ and $b_{k}-a_{k}=2 M / 2^{k}$. This certainly holds for $k=0$.

Suppose it holds for some value of $k$. Then at least one of the intervals $\left[a_{k},\left(a_{k}+b_{k}\right) / 2\right]$ and $\left[\left(a_{k}+b_{k}\right) / 2, b_{k}\right]$ contains infinitely many of the $x_{n}$. If the former, then let $a_{k+1}=a_{k}, b_{k+1}=\left(a_{k}+\right.$ $\left.b_{k}\right) / 2$. Otherwise, let $a_{k+1}=\left(a_{k}+b_{k}\right) / 2, b_{k+1}=b_{k}$. In either case, the interval $I_{k+1}=\left[a_{k+1}, b_{k+1}\right]$ contains infinitely many of the $x_{n}$, and

$$
b_{k+1}-a_{k+1}=\frac{1}{2}\left(b_{k}-a_{k}\right)=\left(\frac{1}{2}\right)^{k+1} \times 2 M .
$$

This completes the inductive construction.
Clearly $a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq b_{2} \leq b_{1} \leq b_{0}$. Thus ( $a_{n}$ ) is an increasing bounded sequence, so by completeness has a limit, say $x$. Moreover since each $b_{k}$ is an upper bound for $\left(a_{n}\right)$ and $x$ is the supremum, $x \leq b_{k}$ for each $k$. Thus $a_{k} \leq x \leq b_{k}$ for every $k$. In other words, $x \in I_{k}$ for every $k$.

We now construct inductively a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $x_{n_{k}} \in I_{k}$ for every $k$. Let $x_{n_{0}}=x_{0}$. Assuming $x_{n_{k}}$ has been chosen, let $n_{k+1}$ be the least $n>n_{k}$ such that $x_{n} \in I_{k+1}$. Then $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$, and $x_{n_{k}} \in I_{k}$ for every $k$.

Since $x_{n_{k}}$ and $x$ both lie in the same interval $I_{k}$ of length $2 M / 2^{k}$, it follows that

$$
\left|x_{n_{k}}-x\right| \leq\left(\frac{1}{2}\right)^{k} \times 2 M
$$

and so $\left|x_{n_{k}}-x\right| \rightarrow 0$ as $n \rightarrow \infty$. Thus $\left(x_{n_{k}}\right)$ is a convergent subsequence of $\left(x_{n}\right)$, as required.

## Solution 3.2

Note that for any real numbers $x, y \in \mathbb{R}$, we have

$$
||x|-|y|| \leq|x-y| .
$$

Since $\left\{x_{n}\right\}$ converges to $l$, then for any $\varepsilon>0$, there exists $n_{0} \geq 1$ such that for any $n \geq n_{0}$, we have

$$
\left|x_{n}-l\right|<\varepsilon .
$$

Hence

$$
\left|\left|x_{n}\right|-|l|\right|<\varepsilon
$$

for any $n \geq n_{0}$. This obviously implies the desired conclusion. For the converse, take $x_{n}=(-1)^{n}$, for $n=0, \ldots$. Then we have $\left|x_{n}\right|=1$ which means that $\left\{\left|x_{n}\right|\right\}$ converges to 1 . But $\left\{x_{n}\right\}$ does not converge. Note that if $l=0$, then the converse is true.

## Solution 3.3

If $C=0$, then the conclusion is obvious. Assume first $0<C<1$. Then the sequence $\left\{C^{n}\right\}$ is decreasing and bounded below by 0 . So it has a limit $L$. Let us prove that $L=0$. We have $C^{n+1}=C C^{n}$ so by passing to the limit we get $L=C L$ which implies $L=0$. If $-1<-C<0$, then we use $(-C)^{n}=(-1)^{n} C^{n}$ and the fact that the product of a bounded sequence with a sequence which converges to 0 also converges to 0 to get $\lim _{n \rightarrow \infty}(-C)^{n}=0$. Therefore, for any $-1<C<1$, we have $\lim _{n \rightarrow \infty} C^{n}=0$.

## Solution 3.4

If $\left\{x_{n}\right\}$ is convergent, then all subsequences of $\left\{x_{n}\right\}$ are convergent and converge to the same limit. Therefore, let us show that the three subsequences converge to the same limit. Write

$$
\lim _{n \rightarrow \infty} x_{2 n}=\alpha_{1}, \lim _{n \rightarrow \infty} x_{2 n+1}=\alpha_{2}, \text { and } \lim _{n \rightarrow \infty} x_{3 n}=\alpha_{3} .
$$

The sequence $\left\{x_{6 n}\right\}$ is a subsequence of both sequences $\left\{x_{2 n}\right\}$ and $\left\{x_{3 n}\right\}$. Hence $\left\{x_{6 n}\right\}$ converges and forces the following:

$$
\lim _{n \rightarrow \infty} x_{6 n}=\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{3 n}
$$

or $\alpha_{1}=\alpha_{3}$. On the other hand, the sequence $\left\{x_{6 n+3}\right\}$ is a subsequence of both sequences $\left\{x_{2 n+1}\right\}$ and $\left\{x_{3 n}\right\}$. Hence $\left\{x_{6 n+3}\right\}$ converges and forces the following:

$$
\lim _{n \rightarrow \infty} x_{6 n+3}=\lim _{n \rightarrow \infty} x_{2 n+1}=\lim _{n \rightarrow \infty} x_{3 n}
$$

or $\alpha_{2}=\alpha_{3}$. Hence $\alpha_{1}=\alpha_{2}=\alpha_{3}$. Let us write

$$
\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n+1}=l
$$

and let us prove that $\lim _{n \rightarrow \infty} x_{n}=l$. Let $\varepsilon>0$. There exist $N_{0} \geq 1$ and $N_{1} \geq 1$ such that

$$
\begin{cases}\left|x_{2 n}-l\right|<\varepsilon & \text { for all } n \geq N_{0} \\ \left|x_{2 n+1}-l\right|<\varepsilon & \text { for all } n \geq N_{1}\end{cases}
$$

Set $N=\max \left\{2 N_{0}, 2 N_{1}+1\right\}$. Let $n \geq N$. If $n=2 k$, then we have $k \geq N_{0}$ since $n \geq N \geq 2 N_{0}$. Using the above inequalities we get $\left|x_{2 k}-l\right|<\varepsilon$ or $\left|x_{n}-l\right|<\varepsilon$. A similar argument when $n$ is odd will yield the same inequality. Therefore

$$
\left|x_{n}-l\right|<\varepsilon
$$

for any $n \geq N$. This completes the proof of our statement.

## Solution 3.5

By the characterization of the supremum, we know that for any $\varepsilon>0$ there exists $x \in S$ such that

$$
s-\varepsilon<x \leq s .
$$

So for any $n \geq 1$, there exists $x_{n} \in S$ such that

$$
s-\frac{1}{n}<x_{n} \leq s .
$$

Since $\left\{\frac{1}{n}\right\}$ goes to 0 , given $\varepsilon>0$, there exists $n_{0} \geq 1$ such that for any $n \geq n_{0}$ we have $\frac{1}{n}<\varepsilon$. So for any $n \geq n_{0}$ we have

$$
s-\varepsilon<s-\frac{1}{n}<x_{n} \leq s<s+\varepsilon
$$

which implies

$$
\left|x_{n}-s\right|<\varepsilon,
$$

which translates into $\lim _{n \rightarrow \infty} x_{n}=s$.

## Solution 3.6

Since $\left\{y_{n}\right\}$ is decreasing, we have $y_{n} \leq y_{1}$ for $n \geq 1$. So for any $n \geq 1$ we have $x_{n} \leq y_{n} \leq y_{1}$. This implies that $\left\{x_{n}\right\}$ is bounded above. Since it is increasing it converges. Similar argument shows that $\left\{y_{n}\right\}$ is bounded below and therefore converges as well. From (a) we get the desired inequality on the limits. In order to have the equality of the limits we must have $\lim _{n \rightarrow \infty} y_{n}-x_{n}=0$. This result is useful when dealing with nested intervals in $\mathbb{R}$ and alternating real series.

## Solution 3.7

We have

$$
x_{2 n}-x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}
$$

for any $n \geq 1$. So

$$
\frac{1}{n+n}+\frac{1}{n+n}+\cdots+\frac{1}{2 n} \leq x_{2 n}-x_{n}
$$

or $\frac{1}{2} \leq x_{2 n}-x_{n}$. This clearly implies that $\left\{x_{n}\right\}$ fails to be Cauchy. Therefore it diverges.

## Solution 3.8

Though real functions will be handled in the next chapters, here we will use the integral definition of the logarithm function. In particular, we have

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t .
$$

In this case if $0<a<b$, then we have

$$
\frac{b-a}{b} \leq \int_{a}^{b} \frac{1}{t} d t \leq \frac{b-a}{a} .
$$

Since

$$
\ln (n)=\int_{1}^{n} \frac{1}{t} d t=\sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{1}{t} d t
$$

we get

$$
\ln (n) \leq \sum_{k=1}^{n-1} \frac{k+1-k}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n-1} .
$$

Hence

$$
x_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln (n)=1+\frac{1}{2}+\cdots+\frac{1}{n-1}-\ln (n)+\frac{1}{n}>0 .
$$

On the other hand, we have

$$
x_{n+1}-x_{n}=\frac{1}{n+1}-\ln (n+1)+\ln (n)=\frac{1}{n+1}-\int_{n}^{n+1} \frac{1}{t} d t<0 .
$$

These two inequalities imply that $\left\{x_{n}\right\}$ is decreasing and bounded below by 0 . Therefore $\left\{x_{n}\right\}$ is convergent. Its limit is known as the Euler constant.

## Solution 3.9

For any natural integers $n<m$ we have

$$
\left|\int_{n}^{m} \frac{\cos (t)}{t^{2}} d t\right| \leq \int_{n}^{m} \frac{|\cos (t)|}{t^{2}} d t \leq \int_{n}^{m} \frac{1}{t^{2}} d t=\left[-\frac{1}{t}\right]_{n}^{m}=\frac{1}{m}-\frac{1}{n} .
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, then for any $\varepsilon>0$, there exists $n_{0} \geq 1$ such that for any $n \geq n_{0}$ we have $\frac{1}{n}<\varepsilon$. So for $n, m \geq n_{0}, n \leq m$, we have

$$
\left|x_{n}-x_{m}\right|=\left|\int_{n}^{m} \frac{\cos (t)}{t^{2}} d t\right| \leq \frac{1}{m}-\frac{1}{n}<\varepsilon
$$

which shows that $\left\{x_{n}\right\}$ is a Cauchy sequence.

## Solution 3.10

Let $n \geq 1$ and $h \geq 1$. We have

$$
\left|x_{n+h}-x_{n}\right|=\left|\sum_{k=0}^{h-1} x_{n+k+1}-x_{n+k}\right| \leq \sum_{k=0}^{h-1}\left|x_{n+k+1}-x_{n+k}\right| .
$$

Our assumption on $\left\{x_{n}\right\}$ implies

$$
\left|x_{n+h}-x_{n}\right| \leq \sum_{k=0}^{h-1} A C^{n+k}=A C^{n} \frac{1-C^{h}}{1-C}<A \frac{C^{n}}{1-C} .
$$

Since $0<C<1, \lim _{n \rightarrow \infty} C^{n}=0$. Hence

$$
\lim _{n \rightarrow \infty} A \frac{C^{n}}{1-C}=0
$$

This will force $\left\{x_{n}\right\}$ to be Cauchy. The second part of the statement is not true. Indeed, take $x_{n}=\sqrt{n}$. Then we have

$$
\lim _{n \rightarrow \infty} \sqrt{n+1}-\sqrt{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}=0 .
$$

But the sequence $\left\{x_{n}\right\}$ is divergent.

## Solution 3.11

Set $\lim _{n_{k} \rightarrow \infty} x_{n_{k}}=L$. Let us show that $\left\{x_{n}\right\}$ converges to $L$. Let $\varepsilon>0$. Since $\left\{x_{n}\right\}$ is Cauchy, there exists $n_{0} \geq 1$ such that for any $n, m \geq n_{0}$ we have

$$
\left|x_{n}-x_{m}\right|<\frac{\varepsilon}{2} .
$$

Since $\lim _{n_{k} \rightarrow \infty} x_{n_{k}}=L$, there exists $k_{0} \geq 1$ such that for any $k \geq k_{0}$ we have

$$
\left|x_{n_{k}}-L\right|<\frac{\varepsilon}{2} .
$$

For $k$ big enough to have $n_{k} \geq n_{0}$ we get

$$
\left|x_{n}-L\right| \leq\left|x_{n}-x_{n_{k}}\right|+\left|x_{n_{k}}-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

for any $n \geq n_{0}$. This completes the proof.

## Solution 3.12

Note that for any $k=1, \ldots, n$, we have

$$
\frac{n^{2}}{\sqrt{n^{6}+n}} \leq \frac{n^{2}}{\sqrt{n^{6}+k}} \leq \frac{n^{2}}{\sqrt{n^{6}}}=\frac{1}{n}
$$

which implies

$$
n \frac{n^{2}}{\sqrt{n^{6}+n}} \leq x_{n} \leq n \frac{1}{n}
$$

or

$$
\frac{n^{3}}{\sqrt{n^{6}+n}} \leq x_{n} \leq 1
$$

Because

$$
\frac{n^{3}}{\sqrt{n^{6}+n}}=\frac{n^{3}}{n^{3} \sqrt{1+\frac{1}{n^{2}}}}=\frac{1}{\sqrt{1+\frac{1}{n^{2}}}}
$$

and $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$, then $\lim _{n \rightarrow \infty} \frac{n^{3}}{\sqrt{n^{6}+n}}=1$. The Squeeze Theorem forces the conclusion

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt{n^{6}+1}}+\frac{n^{2}}{\sqrt{n^{6}+2}}+\cdots+\frac{n^{2}}{\sqrt{n^{6}+n}}=1 .
$$

## Solution 3.13

By definition of the greatest integer function [•], we have

$$
[x] \leq x<[x]+1
$$

for any real number $x$. This will easily imply $x-1<[x] \leq x$. So

$$
\frac{(\alpha-1)+(2 \alpha-1)+\cdots+(n \alpha-1)}{n^{2}}<\frac{[\alpha]+[2 \alpha]+\cdots+[n \alpha]}{n^{2}} \leq \frac{\alpha+2 \alpha+\cdots+n \alpha}{n^{2}}
$$

or

$$
\frac{(1+2+\cdots+n) \alpha-n}{n^{2}}<\frac{[\alpha]+[2 \alpha]+\cdots+[n \alpha]}{n^{2}} \leq \frac{(1+2+\cdots+n) \alpha}{n^{2}} .
$$

The algebraic identity $1+2+\cdots+m=\frac{m(m+1)}{2}$ for any natural number $m \geq 1$ gives

$$
\frac{\frac{n(n+1)}{2} \alpha-n}{n^{2}}<\frac{[\alpha]+[2 \alpha]+\cdots+[n \alpha]}{n^{2}} \leq \frac{\frac{n(n+1)}{2} \alpha}{n^{2}}
$$

or

$$
\frac{(n+1) \alpha}{2 n}-\frac{1}{n}<\frac{[\alpha]+[2 \alpha]+\cdots+[n \alpha]}{n^{2}} \leq \frac{(n+1) \alpha}{2 n}
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{(n+1) \alpha}{2 n}-\frac{1}{n}=\frac{\alpha}{2} \text { and } \lim _{n \rightarrow \infty} \frac{(n+1) \alpha}{2 n}=\frac{\alpha}{2},
$$

the Squeeze Theorem implies $\lim _{n \rightarrow \infty} x_{n}=\frac{\alpha}{2}$.

## Solution 3.14

We have two cases, either $|\alpha|<|\beta|$ or $|\alpha|>|\beta|$. Assume first that $|\alpha|<|\beta|$. Set $r=\frac{\alpha}{\beta}$. Then algebraic manipulation gives

$$
x_{n}=\frac{r^{n}-1}{r^{n}+1} .
$$

Since $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=0$, and we have $\lim _{n \rightarrow \infty} x_{n}=-1$. Finally, if $|\alpha|>|\beta|$, then we use

$$
\frac{\alpha^{n}-\beta^{n}}{\alpha^{n}+\beta^{n}}=-\frac{\beta^{n}-\alpha^{n}}{\beta^{n}+\alpha^{n}}
$$

and the same argument given before will imply

$$
\lim _{n \rightarrow \infty} x_{n}=-\lim _{n \rightarrow \infty} \frac{\beta^{n}-\alpha^{n}}{\beta^{n}+\alpha^{n}}=1
$$

## Solution 3.15

Let $\varepsilon>0$. Since $\lim _{n \rightarrow \infty} x_{n}=l$, there exists $N_{0} \geq 1$ such that for any $n \geq N_{0}$ we have

$$
\left|x_{n}-l\right|<\frac{\varepsilon}{2} .
$$

On the other hand, we have

$$
y_{n}-l=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}-l=\frac{\left(x_{1}-l\right)+\left(x_{2}-l\right)+\cdots+\left(x_{n}-l\right)}{n}
$$

or

$$
y_{n}-l=\frac{\left(x_{1}-l\right)+\left(x_{2}-l\right)+\cdots+\left(x_{N_{0}-1}-l\right)}{n}+\frac{\left(x_{N_{0}}-l\right)+\cdots+\left(x_{n}-l\right)}{n}
$$

for any $n \geq N_{0}$. Since

$$
\lim _{n \rightarrow \infty} \frac{\left(x_{1}-l\right)+\left(x_{2}-l\right)+\cdots+\left(x_{N_{0}-1}-l\right)}{n}=0 .
$$

Then, there exists $N_{1} \geq 1$ such that

$$
\left|\frac{\left(x_{1}-l\right)+\left(x_{2}-l\right)+\cdots+\left(x_{N_{0}-1}-l\right)}{n}\right|<\frac{\varepsilon}{2}
$$

for any $n \geq N_{1}$. Set $N \max \left\{N_{0}, N_{1}\right\}$, then for any $n \geq N$ we have

$$
\left|y_{n}-l\right| \leq\left|\frac{\left(x_{1}-l\right)+\left(x_{2}-l\right)+\cdots+\left(x_{N_{0}-1}-l\right)}{n}\right|+\left|\frac{\left(x_{N_{0}}-l\right)+\cdots+\left(x_{n}-l\right)}{n}\right|
$$

or

$$
\left|y_{n}-l\right| \leq\left|\frac{\left(x_{1}-l\right)+\left(x_{2}-l\right)+\cdots+\left(x_{N_{0}-1}-l\right)}{n}\right|+\frac{\left|x_{N_{0}}-l\right|+\cdots+\left|x_{n}-l\right|}{n}
$$

which implies

$$
\left|y_{n}-l\right|<\frac{\varepsilon}{2}+\frac{n-N_{0}}{n} \frac{\varepsilon}{2}<\varepsilon .
$$

This completes the proof of our statement. For the converse take $x_{n}=(-1)^{n}$. Then we have

$$
y_{n}=\left\{\begin{array}{cc}
-\frac{1}{n} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }
\end{array}\right.
$$

Obviously this will imply that $\lim _{n \rightarrow \infty} y_{n}=0$ while $\left\{x_{n}\right\}$ is well known to be divergent. Finally, let $\left\{x_{n}\right\}$ be a sequence such that $\lim _{n \rightarrow \infty} x_{n+1}-x_{n}=l$. Set

$$
y_{n}=\frac{\left(x_{2}-x_{1}\right)+\left(x_{3}-x_{2}\right)+\cdots+\left(x_{n+1}-x_{n}\right)}{n} .
$$

Then from the first part we have $\lim _{n \rightarrow \infty} y_{n}=l$. But

$$
y_{n}=\frac{x_{n+1}-x_{1}}{n}
$$

which implies $x_{n+1}=n y_{n}+x_{1}$. Hence

$$
\frac{x_{n}}{n}=\frac{n-1}{n} y_{n-1}+\frac{x_{1}}{n} .
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{n-1}{n}=1, \lim _{n \rightarrow \infty} y_{n}=l, \text { and } \lim _{n \rightarrow \infty} \frac{x_{1}}{n}=0
$$

we get

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{n}=l .
$$

## Solution 3.16

Assume first that $|l|<1$. Let $\varepsilon=\frac{1-|l|}{2}$. Then we have $\varepsilon>0$. Since

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=l
$$

we get

$$
\lim _{n \rightarrow \infty}\left|\frac{x_{n+1}}{x_{n}}\right|=|l| .
$$

Thus there exists $N_{0} \geq 1$ such that for any $n \geq N_{0}$

$$
\left|\frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}-|l|\right|<\varepsilon
$$

which implies

$$
|l|-\varepsilon<\frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}<|l|+\varepsilon
$$

for any $n \geq N_{0}$. By definition of $\varepsilon$ we get

$$
\frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}<\frac{|l|+1}{2}<1 .
$$

In particular, we have for any $n \geq N_{0}$

$$
\left|x_{n+1}\right|<\left(\frac{|l|+1}{2}\right)^{n-N_{0}+1}\left|x_{N_{0}}\right| .
$$

Since $\lim _{n \rightarrow \infty}\left(\frac{|l|+1}{2}\right)^{n-N_{0}+1}=0$, we get $\lim _{n \rightarrow \infty}\left|x_{n}\right|=0$ which obviously implies $\lim _{n \rightarrow \infty} x_{n}=0$. This completes the proof of the first part. Now assume $|l|>1$. Since again

$$
\lim _{n \rightarrow \infty}\left|\frac{x_{n+1}}{x_{n}}\right|=|l|
$$

the same proof as above gives the existence of $N_{0} \geq 1$ such that

$$
\left(\frac{|l|+1}{2}\right)^{n-N_{0}+1}\left|x_{N_{0}}\right|<\left|x_{n+1}\right|
$$

for any $n \geq N_{0}$. And since $\lim _{n \rightarrow \infty}\left(\frac{|l|+1}{2}\right)^{n-N_{0}+1}=\infty$, we get $\lim _{n \rightarrow \infty}\left|x_{n}\right|=\infty$. Hence the sequence $\left\{x_{n}\right\}$ is not bounded and therefore is divergent. Finally if we assume $|l|=1$, then it is possible that $\left\{x_{n}\right\}$ may be convergent or divergent. For example, take $x_{n}=n^{\alpha}$, then we have $l=1$. But the sequence only converges if $\alpha \leq 0$, otherwise it diverges. For the sequences

$$
x_{n}=\frac{\alpha^{n}}{n^{k}} \text { and } y_{n}=\frac{\alpha^{n}}{n!},
$$

we have

$$
\frac{x_{n+1}}{x_{n}}=\alpha\left(\frac{n}{n+1}\right)^{k} \text { and } \frac{y_{n+1}}{y_{n}}=\alpha \frac{n!}{(n+1)!}=\alpha \frac{1}{n+1} .
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\alpha \text { and } \lim _{n \rightarrow \infty} \frac{y_{n+1}}{y_{n}}=0 .
$$

In particular, we have

$$
\begin{cases}\lim _{n \rightarrow \infty} x_{n}=0 & \text { if }|\alpha|<1 \\ \left\{x_{n}\right\} \text { is divergent } & \text { if }|\alpha|>1\end{cases}
$$

And if $|\alpha|=1$, then the sequence in question is $\left\{\frac{1}{n^{k}}\right\}$ or $\left\{\frac{(-1)^{n}}{n^{k}}\right\}$ which is easy to conclude. For the sequence $\left\{y_{n}\right\}$ we have $\lim _{n \rightarrow \infty} y_{n}=0$ regardless of the value of $\alpha$.

## Solution 3.17

Without loss of generality, we may assume $1<x$. First note that

$$
0<(\sqrt[n]{x}-1)^{2}=\sqrt[n]{x^{2}}-2 \sqrt[n]{x}+1
$$

which implies $2 \sqrt[n]{x}-1<\sqrt[n]{x^{2}}$. Hence

$$
(2 \sqrt[n]{x}-1)^{n}<\left(\sqrt[n]{x^{2}}\right)^{n}=x^{2}
$$

On the other hand, we have

$$
(2 \sqrt[n]{x}-1)^{n}=x^{2}\left(\frac{2 \sqrt[n]{x}-1}{\sqrt[n]{x^{2}}}\right)^{n}=x^{2}\left(\frac{2}{\sqrt[n]{x}}-\frac{1}{\sqrt[n]{x^{2}}}\right)^{n}=x^{2}\left(1-\left(1-\frac{1}{\sqrt[n]{x}}\right)^{2}\right)^{n} .
$$

Since $(1-h)^{n} \geq 1-n h$, for any $h \geq 0$ and $n \geq 1$ we get

$$
\left(1-\left(1-\frac{1}{\sqrt[n]{x}}\right)^{2}\right)^{n} \geq 1-n\left(1-\frac{1}{\sqrt[n]{x}}\right)^{2}
$$

and

$$
x=(\sqrt[n]{x}-1+1)^{n} \geq 1+n(\sqrt[n]{x}-1)>n(\sqrt[n]{x}-1)
$$

which implies

$$
(\sqrt[n]{x}-1)^{2}<\frac{x^{2}}{n^{2}}
$$

Hence

$$
(2 \sqrt[n]{x}-1)^{n} \geq x^{2}\left(1-n\left(1-\frac{1}{\sqrt[n]{x}}\right)^{2}\right)=x^{2}\left(1-n \frac{(\sqrt[n]{x}-1)^{2}}{\sqrt[n]{x^{2}}}\right)
$$

or

$$
(2 \sqrt[n]{x}-1)^{n}>x^{2}\left(1-\frac{x^{2}}{n \sqrt[n]{x^{2}}}\right)
$$

Putting all the inequalities together we get

$$
x^{2}\left(1-\frac{x^{2}}{n \sqrt[n]{x^{2}}}\right)<(2 \sqrt[n]{x}-1)^{n}<x^{2}
$$

The Squeeze Theorem will then imply

$$
\lim _{n \rightarrow \infty}(2 \sqrt[n]{x}-1)^{n}=x^{2}
$$

since

$$
\lim _{n \rightarrow \infty} x^{2}\left(1-\frac{x^{2}}{n \sqrt[n]{x^{2}}}\right)=x^{2}
$$

## Solution 3.18

In the previous problem we showed

$$
x^{2}\left(1-n \frac{(\sqrt[n]{x}-1)^{2}}{\sqrt[n]{x^{2}}}\right)<(2 \sqrt[n]{x}-1)^{n}<x^{2}
$$

for any $x>1$ and $n \geq 1$. Take $x=n$, we get

$$
n^{2}\left(1-n \frac{(\sqrt[n]{n}-1)^{2}}{\sqrt[n]{n^{2}}}\right) \leq(2 \sqrt[n]{n}-1)^{n} \leq n^{2}
$$

which implies

$$
1-n \frac{(\sqrt[n]{n}-1)^{2}}{\sqrt[n]{n^{2}}} \leq \frac{(2 \sqrt[n]{n}-1)^{n}}{n^{2}} \leq 1
$$

In order to complete the proof of our statement we only need to show

$$
\lim _{n \rightarrow \infty} n \frac{(\sqrt[n]{n}-1)^{2}}{\sqrt[n]{n^{2}}}=0
$$

Note that for $x \in[0,1]$ we have $0 \leq e^{x}-1 \leq 3 x$. Hence

$$
0 \leq \sqrt[n]{n}-1=e^{\frac{\ln (n)}{n}}-1 \leq 3 \frac{\ln (n)}{n}
$$

because $\ln (n) \leq n$ for $n \geq 1$. So

$$
0 \leq n(\sqrt[n]{n}-1)^{2} \leq n 9 \frac{\ln (n)^{2}}{n^{2}}=9 \frac{\ln ^{2}(n)}{n}
$$

Since $\lim _{n \rightarrow \infty} \frac{\ln ^{2}(n)}{n}=0$, we conclude that

$$
\lim _{n \rightarrow \infty} n(\sqrt[n]{n}-1)^{2}=0
$$

which yields

$$
\lim _{n \rightarrow \infty} n \frac{(\sqrt[n]{n}-1)^{2}}{\sqrt[n]{n^{2}}}=0
$$

## Solution 3.19

Let us first show by induction that $0 \leq x_{n}$ and $1 \leq x_{n}^{2} \leq 2$. Obviously we have $0 \leq 1$ and $1 \leq 1^{2} \leq 2$. Assume that $0 \leq x_{n}$ and $1 \leq x_{n}^{2} \leq 2$. Then by the definition of $x_{n+1}$ we obtain easily $0 \leq x_{n+1}$. On the other hand, we have

$$
x_{n+1}^{2}=\frac{1}{4}\left(x_{n}^{2}+4+\frac{4}{x_{n}^{2}}\right)=\frac{1}{4}\left(x_{n}^{2}+\frac{4}{x_{n}^{2}}\right)+1 .
$$

Since $\left(2-x_{n}\right)^{2}=4-4 x_{n}^{2}+x_{n}^{4} \geq 0$ we get $\frac{x_{n}^{4}+4}{4 x_{n}^{2}} \leq 1$ or $\frac{1}{4}\left(x_{n}^{2}+\frac{4}{x_{n}^{2}}\right) \leq 1$. This will imply $x_{n+1}^{2} \leq 1+1=2$. So the induction argument gives the desired conclusion that is $x_{n} \geq 0$ and $1 \leq x_{n}^{2} \leq 2$, for any $n \geq 1$. On the other hand, algebraic manipulations give

$$
x_{n+1}-x_{n}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)-x_{n}=\frac{2-x_{n}^{2}}{2 x_{n}}
$$

which implies $x_{n+1}-x_{n} \geq 0$ for any $n \geq 1$. Hence $\left\{x_{n}\right\}$ is an increasing bounded sequence. So it converges. Set $\lim _{n \rightarrow \infty} x_{n}=l$. Then we have $l \geq 0$ and $1 \leq l^{2} \leq 2$. Since $\left\{x_{n+1}\right\}$ also converges to $l$, we get

$$
l=\frac{1}{2}\left(l+\frac{2}{l}\right)=\frac{l^{2}+2}{2 l},
$$

or $2 l^{2}=l^{2}+2$, which gives $l^{2}=2$ or $l=\sqrt{2}$. Note that the sequence $\left\{x_{n}\right\}$ is formed of rational numbers and its limit is irrational. One may generalize this problem to the sequence

$$
x_{1}=1 \text { and } x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)
$$

and show that $\left\{x_{n}\right\}$ converges to $\sqrt{\alpha}$ provided $\alpha \geq 0$.

## Solution 3.20

Obviously the sequence $\left\{x_{n}\right\}$ is positive and since $x_{n+1}=\sqrt{x_{n}^{2}+\frac{1}{2^{n}}} \geq \sqrt{x_{n}^{2}}=x_{n}$ in other words, the sequence $\left\{x_{n}\right\}$ is increasing. So in particular we have $x_{n} \geq x_{1}=1$ for any $n \geq 1$. Since

$$
x_{n+1}-x_{n}=\sqrt{x_{n}^{2}+\frac{1}{2^{n}}}-x_{n}=\frac{\frac{1}{2^{n}}}{\sqrt{x_{n}^{2}+\frac{1}{2^{n}}}+x_{n}}
$$

and

$$
\sqrt{x_{n}^{2}+\frac{1}{2^{n}}}+x_{n} \geq \sqrt{x_{n}^{2}}+x_{n} \geq \sqrt{1}+1=2
$$

we get

$$
0 \leq x_{n+1}-x_{n}=\frac{\frac{1}{2^{n}}}{\sqrt{x_{n}^{2}+\frac{1}{2^{n}}}+x_{n}} \leq \frac{1}{2^{n+1}}
$$

On the other hand, we have

$$
x_{n+h}-x_{n}=\left(x_{n+h}-x_{n+h-1}\right)+\left(x_{n+h-1}-x_{n+h-2}\right)+\cdots+\left(x_{n+1}-x_{n}\right)
$$

so

$$
x_{n+h}-x_{n} \leq \frac{1}{2^{n+h}}+\frac{1}{2^{n+h-1}}+\cdots+\frac{1}{2^{n+1}}=\frac{1}{2^{n+1}}\left(\frac{1}{2^{h-1}}+\cdots+\frac{1}{2}+1\right)
$$

which implies

$$
x_{n+h}-x_{n} \leq \frac{1}{2^{n+1}}\left(\frac{1-\frac{1}{2^{h}}}{1-\frac{1}{2}}\right) \leq \frac{1}{2^{n}}
$$

Since $\left\{\frac{1}{2^{n}}\right\}$ converges to 0 , then for any $\varepsilon>0$, there exists $N_{0} \geq 1$ such that for any $n \geq N_{0}$, we have $\frac{1}{2^{n}}<\varepsilon$ which implies $x_{n+h}-x_{n}<\varepsilon$ for any $n \geq N_{0}$ and any $h \geq 1$. This obviously implies that $\left\{x_{n}\right\}$ is Cauchy. Therefore, $\left\{x_{n}\right\}$ is convergent. Note that if we are able to prove that $\left\{x_{n}\right\}$ is bounded, then we will get again the same conclusion without the complicated algebraic calculations.

## Solution 3.21

1. One can easily show that $I_{0}=\pi / 2$ and $I_{1}=1$. For $n \geq 2$, we use the integration by parts technique to show

$$
I_{n+2}=\int_{0}^{\pi / 2} \cos ^{n+1}(t) \cos (t) d t=\left[\cos ^{n+1}(t) \sin (t)\right]_{0}^{\pi / 2}+(n+1) \int_{0}^{\pi / 2} \cos ^{n}(t) \sin ^{2}(t) d t
$$

which implies $I_{n+2}=(n+1)\left(I_{n}-I_{n+2}\right)$ or

$$
I_{n+2}=\frac{n+1}{n+2} I_{n} .
$$

Hence

$$
I_{2 n}=\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \cdots \frac{1}{2} I_{0}=\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}=\frac{(2 n)!\pi}{2^{2 n+1}(n!)^{2}},
$$

and

$$
I_{2 n+1}=\frac{2 n}{2 n+1} \cdot \frac{2 n-2}{2 n-1} \cdots \frac{2}{3} I_{1}=\frac{2 n}{2 n+1} \cdot \frac{2 n-2}{2 n-1} \cdots \frac{2}{3}=\frac{2^{2 n}(n!)^{2}}{(2 n+1)!} .
$$

2. Note that since $0 \leq \cos ^{n+1}(t) \leq \cos ^{n}(t)$, for any $t \in[0, \pi / 2]$, then $I_{n+1} \leq I_{n}$, i.e., $\left\{I_{n}\right\}$ is decreasing. In particular, we have $I_{n+2} \leq I_{n+1} \leq I_{n}$ and since $I_{n}>0$ we get

$$
1 \leq \frac{I_{n+1}}{I_{n+2}} \leq \frac{I_{n}}{I_{n+2}}=\frac{n+2}{n+1} .
$$

Hence $\lim _{n \rightarrow \infty} \frac{I_{n+1}}{I_{n}}=1$.
3. Since

$$
(n+2) I_{n+1} I_{n+2}=(n+1) I_{n} I_{n+1}
$$

we conclude that $\left\{(n+1) I_{n} I_{n+1}\right\}$ is a constant sequence. Hence

$$
(n+1) I_{n} I_{n+1}=I_{0} I_{1}=\frac{\pi}{2},
$$

which implies $\lim _{n \rightarrow \infty} 2 n I_{n}^{2}=\lim _{n \rightarrow \infty} 2(n+1) I_{n} I_{n+1}=\pi$, or

$$
\lim _{n \rightarrow \infty} I_{n} \sqrt{2 n}=\sqrt{\pi}
$$

## Solution 3.22

1. Note that $x_{n}>0$ for $n \geq 1$. We have

$$
\ln \left(x_{n+1}\right)-\ln \left(x_{n}\right)=\ln \left(\frac{x_{n+1}}{x_{n}}\right)=\ln \left(\frac{(n+1)!}{n!} \cdot \sqrt{\frac{n}{n+1}} \cdot e \cdot \frac{n^{n}}{(n+1)^{n+1}}\right)
$$

which leads to

$$
\ln \left(x_{n+1}\right)-\ln \left(x_{n}\right)=1-\left(n+\frac{1}{2}\right) \ln \left(1+\frac{1}{n}\right) .
$$

Note that we have

$$
\lim _{n \rightarrow \infty} n^{2}\left(\ln \left(x_{n+1}\right)-\ln \left(x_{n}\right)\right)=\frac{1}{12} .
$$

Indeed, using the Taylor approximation of $\ln (1+x)$ we get

$$
\ln \left(1+\frac{1}{n}\right)=\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{6 n^{3}}+\frac{\varepsilon_{n}}{n^{3}}
$$

where $\left\{\varepsilon_{n}\right\}$ goes to 0 when $n \rightarrow \infty$. Hence

$$
\ln \left(x_{n+1}\right)-\ln \left(x_{n}\right)=1-\left(n+\frac{1}{2}\right)\left(\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{6 n^{3}}+\frac{\varepsilon_{n}}{n^{3}}\right)=-\frac{1}{6 n^{2}}+\frac{1}{4 n^{2}}-\frac{\varepsilon_{n}}{n^{2}}-\frac{\varepsilon_{n}}{2 n^{3}}
$$

which implies

$$
\lim _{n \rightarrow \infty} n^{2}\left(\ln \left(x_{n+1}\right)-\ln \left(x_{n}\right)\right)=-\frac{1}{6}+\frac{1}{4}=\frac{1}{12} .
$$

Since the series $\sum 1 / n^{2}$ is convergent, the limit test will force $\sum \ln \left(x_{n+1}\right)-\ln \left(x_{n}\right)$ to be convergent. Hence $\ln \left(x_{n}\right)$ is convergent which in turn will force $\left\{x_{n}\right\}$ to be convergent. Set $l=\lim _{n \rightarrow \infty} x_{n}=e^{L}$, where $L=\lim _{n \rightarrow \infty} \ln \left(x_{n}\right)$. In particular, we have $l>0$.
2. From the first part, we get

$$
n!\approx l\left(\frac{n}{e}\right)^{n} \sqrt{n}, \quad \text { when } n \rightarrow \infty
$$

Using Wallis integrals (see Problem 3.21), $I_{n}=\int_{0}^{\pi / 2} \cos ^{n}(t) d t$, we know that $\lim _{n \rightarrow \infty} I_{n} \sqrt{2 n}=$ $\sqrt{\pi}$, or

$$
I_{n} \approx \sqrt{\frac{\pi}{2 n}}, \text { when } n \rightarrow \infty
$$

Since $I_{2 n}=\frac{(2 n)!\pi}{2^{2 n+1}(n!)^{2}}$, we get

$$
\sqrt{\frac{\pi}{4 n}} \approx \frac{(2 n)!\pi}{2^{2 n+1}(n!)^{2}}, \text { when } n \rightarrow \infty
$$

which implies

$$
\sqrt{\frac{\pi}{4 n}} \approx \frac{l(2 n)^{2 n} e^{-2 n} \sqrt{2 n}}{2^{2 n}\left(\ln ^{n} e^{-n} \sqrt{n}\right)^{2}} \frac{\pi}{2}, \text { when } n \rightarrow \infty .
$$

Easy algebraic manipulations will lead to $l=\sqrt{2 \pi}$.
3. Putting all the above results together we get

$$
n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}, \text { when } n \rightarrow \infty
$$

## Solution 3.23

- Notice that for any fixed $n, x_{n}=2+\frac{1}{2^{n}}$ if $n$ is even and $x_{n}=\frac{1}{2^{n}}$ if $n$ is odd. Thus $y_{n}=\sup \left\{x_{n}: k \geq n\right\}=2+\frac{1}{2^{n}}$ if $n$ is even and $2+\frac{1}{2^{n+1}}$ if $n$ is odd. Hence

$$
\lim \sup \left\{x_{n}\right\}=\inf \left\{y_{n}: \quad n \in \mathbb{N}\right\}=2
$$

A similar calculation yields $\lim \inf \left\{x_{n}\right\}=0$.

- Because $\left\{x_{n}\right\}$ is not bounded above, the limit superior does not exist. For the limit inferior, consider $z_{n}=\inf \left\{x_{k}: k \geq n\right\}$. Clearly, $z_{n}=x_{n}=2^{n}$, since $\left\{x_{n}\right\}$ is monotone increasing and $z_{n}$ diverges to $\infty$. Thus supremum over $\left\{z_{n}: n \in \mathbb{N}\right\}$ does not exist, therefore the limit inferior does not exist. Note that even though the sequence $\left\{x_{n}\right\}$ is bounded below, limit inferior does not exist.


## Solution 3.24

Since

$$
\liminf _{n \rightarrow \infty}-x_{n}=-\limsup _{n \rightarrow \infty} x_{n}
$$

we will only prove the existence of a subsequence which converges to $\liminf _{n \rightarrow \infty} x_{n}$. It is clear that $\liminf _{n \rightarrow \infty} x_{n}=l \in \mathbb{R}$ since $\left\{x_{n}\right\}$ is bounded below. For any $\varepsilon>0$ there exists $N \in \mathbb{N}$, such that for any $n \geq N$ we have

$$
l-\varepsilon<\inf \left\{x_{k} ; k \geq n\right\} \leq l .
$$

Set $\varepsilon=1$, then there exists $N_{1} \in \mathbb{N}$ such that for any $n \geq N_{1}$ we have

$$
l-1<\inf \left\{x_{k} ; k \geq n\right\} \leq l .
$$

By induction one will construct an increasing sequence of integers $\left\{N_{i}\right\} \in \mathbb{N}$ such that for any $n \geq N_{i}$ we have

$$
l-\frac{1}{i}<\inf \left\{x_{k} ; k \geq n\right\} \leq l
$$

In particular, we have $l-1 / k<x_{N_{k}} \leq l$, which implies $\left\{x_{N_{k}}\right\} \rightarrow l$.

## Solution 3.25

Note that for any sequence $\left\{x_{n}\right\}$ we have $\liminf _{n \rightarrow \infty} x_{n} \leq \limsup _{n \rightarrow \infty} x_{n}$. Since $\liminf _{n \rightarrow \infty}-x_{n}=-\limsup x_{n \rightarrow \infty}$, we will only show that $\liminf _{n \rightarrow \infty} x_{n} \leq \liminf _{n_{k} \rightarrow \infty} x_{n_{k}}$. By definition we have

$$
\inf \left\{x_{k} ; k \geq n\right\} \leq \inf \left\{x_{n_{k}} ; n_{k} \geq n\right\}, \quad n \in \mathbb{N} .
$$

Hence

$$
\inf \left\{x_{k} ; k \geq n^{\prime}\right\} \leq \sup _{n \in \mathbb{N}}\left(\inf \left\{x_{n_{k}} ; n_{k} \geq n\right\}\right), \quad n^{\prime} \in \mathbb{N},
$$

or

$$
\sup _{n^{\prime} \in \mathbb{N}}\left(\inf \left\{x_{k} ; k \geq n^{\prime}\right\}\right) \leq \sup _{n \in \mathbb{N}}\left(\inf \left\{x_{n_{k}} ; n_{k} \geq n\right\}\right)
$$

which implies $\liminf _{n \rightarrow \infty} x_{n} \leq \liminf _{n_{k} \rightarrow \infty} x_{n_{k}}$. Moreover if we assume that $\left\{x_{n_{k}}\right\}$ is convergent, then we have

$$
\liminf _{n_{k} \rightarrow \infty} x_{n_{k}}=\limsup _{n_{k} \rightarrow \infty} x_{n_{k}}=\lim _{n_{k} \rightarrow \infty} x_{n_{k}},
$$

which implies $\liminf _{n \rightarrow \infty} x_{n} \leq \lim _{n_{k} \rightarrow \infty} x_{n_{k}} \leq \limsup _{n \rightarrow \infty} x_{n}$. The converse is not true. Indeed, consider the sequence $\left\{(-1)^{n}\right\}$. Then we have $\liminf _{n \rightarrow \infty}(-1)^{n}=-1$ and $\limsup _{n \rightarrow \infty}(-1)^{n}=1$. On other hand there does not exist a subsequence which converges to 0 .

## Solution 3.26

For any $N \in \mathbb{N}$, we have

$$
x_{n}+y_{n} \leq \sup \left\{x_{k} ; k \geq N\right\}+\sup \left\{y_{k} ; k \geq N\right\}, n \geq N
$$

which implies $\sup \left\{x_{n}+y_{n} ; n \geq N\right\} \leq \sup \left\{x_{k} ; k \geq N\right\}+\sup \left\{y_{k} ; k \geq N\right\}$. Hence

$$
\inf _{N \in \mathbb{N}}\left(\sup \left\{x_{n}+y_{n} ; n \geq N\right\}\right) \leq \inf _{N \in \mathbb{N}}\left(\sup \left\{x_{n} ; n \geq N\right\}\right)+\inf _{N \in \mathbb{N}}\left(\sup \left\{y_{n} ; n \geq N\right\}\right),
$$

or $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$. The equality does not hold in general. Indeed, we have $\limsup _{n \rightarrow \infty}(-1)^{n}=1$, and $\limsup _{n \rightarrow \infty}(-1)^{n+1}=1$, but $\limsup _{n \rightarrow \infty}(-1)^{n}+(-1)^{n+1}=0$.

## Solution 3.27

Assume first that $\liminf _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=l \in \mathbb{R}$. So for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for any $n \geq N$, we have $l-\varepsilon \leq \inf _{n \geq N} \frac{x_{n+1}}{x_{n}}$, which implies $(l-\varepsilon) x_{n} \leq x_{n+1}$ for any $n \geq N$. This clearly implies $(l-\varepsilon)^{n-N} x_{N} \leq x_{n}$, for any $n \geq N$. Hence

$$
(l-\varepsilon)^{(n-N) / n} x_{N}^{1 / n} \leq x_{n}^{1 / n} .
$$

Since $(l-\varepsilon)^{(n-N) / n} x_{N}^{1 / n} \rightarrow(l-\varepsilon)$ when $n \rightarrow \infty$, we get

$$
l-\varepsilon \leq \liminf _{n \rightarrow \infty} x_{n}^{1 / n}
$$

Since $\varepsilon$ was arbitrarily positive, we get

$$
\liminf _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{x_{n}}
$$

A similar proof will lead to

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{x_{n}} \leq \limsup _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}
$$

If $\left\{x_{n+1} / x_{n}\right\}$ is convergent, then we have

$$
\liminf _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\limsup _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}},
$$

which obviously implies

$$
\liminf _{n \rightarrow \infty} \sqrt[n]{x_{n}}=\limsup _{n \rightarrow \infty} \sqrt[n]{x_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}
$$

The converse is not true. Indeed, take $x_{n}=2+(-1)^{n}, n \in \mathbb{N}$. It is easy to check that $\sqrt[n]{x_{n}} \rightarrow 1$ when $n \rightarrow \infty$. But

$$
\liminf _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\frac{1}{3}, \text { and } \limsup _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=3 .
$$

