1. Perior about differentiation:
. Ref:
$$f'(x) = \lim_{h \to 0} \frac{f(c_{h}) - f(x)}{h} = \lim_{h \to \infty} \frac{f(t) - f(x)}{t - x}$$

. Rule: it may be that $f'(x)$ exists everywhere, but f' is
not coset continuous $f(x) = \begin{cases} x^{2} \cdot \sin(\frac{1}{x}) & x > 0 \\ 0 & x \leq 0 \end{cases}$
 $f'(x) = \begin{cases} x^{2}(\frac{1}{x})\cos(\frac{1}{x}) \cdot x > 0 \\ 0 & x \leq 0 \end{cases}$
. Mean Value. Thin: if $f: (a, b] \rightarrow \mathbb{R}$ cts, f' exist on (a, b) ,
Then \bigcirc if $f(a) = f(b)$, then $\exists c \in (a, b) \cdot st$. $f'(c) = 0$
. Mean Value. Thin: if $f: (a, b] \rightarrow \mathbb{R}$ cts, f' exist on (a, b) ,
Then \bigcirc if $f(a) = f(b)$, then $\exists c \in (a, b) \cdot st$. $f'(c) = 0$
. Mean value. Thin: if $f: (a, b] \rightarrow \mathbb{R}$ cts, f' exist on (a, b) ,
Then \bigcirc if $f(a) = f(b)$, then $\exists c \in (a, b) \cdot st$. $f'(c) = 0$
. Moreover, $f(x) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}$

€ L'HSpital rule:

Today: Higher derivatives, Taylor expansion. Taylor Thm. Power Series. Def (Higher derivative) · If f: [a, b] → R has derivatives ∀ x ∈ [a, b], and if f(x) is again differentiable at all pts, then we define f''(x) = (f')'(x).Similarly, the n-th derivative $f^{(n)}(x) := (f^{(n-1)})'(x)$ if the RHS exist. the RHS exist. • <u>short notetions</u>: $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(2)} = f''$, $f^{(3)} \dots$ Ex: (1) $f(x) = \chi^{n}$, $f'(x) = n \cdot \chi^{n-1}$, $f''(x) = n \cdot (n-1) \cdot \chi^{n-2}$, ... $n \in \mathbb{Z}$. (actually n can be any real numbers, in that) case, we restrict x > 0. e.g. $x^{\frac{1}{2}} = Jx$ (z). $f(x) = e^{x}$, $f'(x) = e^{x}$, $- - f''(x) = e^{x}$. $\sin x \xrightarrow{(..)} \cos x \xrightarrow{(..)} - \sin x \xrightarrow{(.-)} - \cos x \xrightarrow{(.-)} \sin x.$ (3) Those are examples, where derivatives exists to all order. i.e. $\forall x \in domain(f)$, $f^{(m)}(x)$ exists. $\forall n \in \mathbb{N}$. We call such functions. smooth functions.

 $\lim_{h \to 0^+} \frac{f(h) - f(o)}{h - o} = \lim_{h \to 0^+} \frac{f(h) - f(o)}{h - o} = \lim_{h \to 0^+} \frac{f(h) - h}{h} = 0.$ $\chi \leq \bigcirc$ Indeed. $f'(x) = \begin{cases} 0 & x = 0 \\ \frac{1}{x^2} \cdot e^{-\frac{1}{x}} & x = 0 \end{cases}$ In general, one can prove the following by induction. $f^{(n)}(x) = \begin{cases} 0 & x \leq 0. \\ P_n(\frac{1}{\lambda}) \cdot e^{-\frac{1}{\lambda}} \\ P_n(\frac{1}{\lambda}) \cdot e^{-\frac{1}{\lambda}} \\ x > 0. \end{cases}$ t polynomial, in t # (2). "smooth step function" it is a far somooth fan $\begin{array}{cccc}
 & & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$ $f(x) = \frac{f(x)}{f(x) + f(t-x)}$ To see that g(x) is smooth, we note both denominator & numerator are smooth, and denominator is nowhere vanishing, Lemma: if A(x), B(x) are smooth on \mathbb{R} , and $B(x) \neq 0$ then X(x)/B(x) is smooth. $\frac{Pf:}{\binom{N}{\beta}} = \frac{d'\beta - \beta'\alpha}{\beta^2} \quad \text{let } d_1 = d'\beta - \beta'\alpha}{\beta_1 = \beta^2}.$ then dr, B, are smooth, and Bith = O. UX.

Taylor Theorem:

Non. rigorous statement:
Say five is smooth
$$\forall x \in \mathbb{R}$$
, and pick any $d \in \mathbb{R}$.
then $f(x) = \sum_{n=0}^{\infty} f''(a) \cdot \frac{1}{n!} \cdot (x-a)^n$. (x)
This works for $f(x) = e^x$, $\sin x$, x^n , $e^{-\cdots}$.
But is this true for all smooth functions \overline{r}
Arts: No. take $f(x)$ to be the $\int e^{-\frac{1}{2}} x > 0$.
take $d = 0$. Then $f^{(n)}(a) = 0$, $\forall n = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$.
Hence $\sum_{n=0}^{\infty} f^{(n)}(a) = \frac{1}{n!} (x-a)^n = 0$. Ure \mathbb{R}
but certainly $f(x) \neq 0$ for $x \ge 0$, (\mathcal{H}) is not then
 $\int e^{-\frac{1}{2}} x > 0$.
Thus: Let $f: [a,b] \rightarrow \mathbb{R}$ be a function. such that
 $\int f^{(n)}(x) = \frac{1}{n!} (x-a)^n = 0$. We have
 $f(\beta) = f(\alpha) + f'(\alpha) \cdot (\beta - \alpha) + \frac{1}{n} (\alpha) (\beta - \alpha)^2 + \cdots + \frac{1}{n} \frac{f^{(n)}(\beta)}{(n-1)!} (\beta - \alpha)^n$
 $+ \frac{1}{n!} (\alpha, \beta)$. Then for any $\alpha, \beta \in [a,b]$, we have
 $f(\beta) = f(\alpha) + f'(\alpha) \cdot (\beta - \alpha) + \frac{1}{n} (\beta - \alpha)^2 + \cdots + \frac{1}{n} \frac{f^{(n)}(\beta)}{(n-1)!} (\beta - \alpha)^n$
 $+ \frac{1}{n!} (\alpha, \beta) = \begin{cases} 0 & \frac{1}{n!} (\beta - \alpha)^n & \frac{1}{n!} d = \beta \\ \frac{1}{n!} (\beta - \alpha)^n & \frac{1}{n!} d = \beta. \\ \frac{1}{n!} (\beta - \alpha)^n & \frac{1}{n!} d = \beta. \end{cases}$

If we introduce notation $\frac{f^{(k)}(\alpha)}{P_{\alpha,m}(x)} = \sum_{k=0}^{m} \frac{f^{(k)}(\alpha)}{k!} (x-\alpha)^{k}$ the "m-th" order Taylor expansion of f at d., then the above $f(x) - P_{d,n-1}(x) = \frac{f^{n}(x)}{n!} (x-d)^{n}$:5 for some &. between X and d. Given a smooth function f(x) on R E_{X} : $f(x) = \int [-x^{2}] dx$ on p[-1, 1]. how to desuribe fix) near x = a? f'(x) exists on (-1,1). To the 0-th order, we use value of f at $x=\alpha$, i.e. $f(\alpha)$. $P_{\alpha,o}(x) = f(\alpha)$. Const for To the 1-st order., we use. $P_{d,1}(x) = f(a) + f'(a) (x - a)$ linear then $\int P_{\alpha,1}(\alpha) = f(\alpha)$ $P_{\alpha,1}(\alpha) = f'(\alpha)$ To the m-th order, if we know $f(\alpha)$, ..., $f^{(m)}(\alpha)$. then we can use Pd, m(x), a deg m polynomial in x, s.t. $P_{d,m}^{(k)}(d) = f^{(k)}(d) \qquad k = o_{2}(j--, m).$ Q2: How to measure the error between the approximation & the actual. function ? error of const approx

$$\begin{split} f(x) &= P_{a,a}(x) = f(x) - f(x) = (x-a) \cdot f'(t) \\ &\uparrow & free to bectween \\ & hy MUT & free to bectween \\ & Y and d. \\ \hline error for linear approx? \\ f(x) - P_{d,4}(x) = f(x) - f(x) - f'(x) (x-d) \stackrel{?}{=} (x-a)^2 \cdot \frac{f''(t)}{2!} \\ & fvee Y \in (x, x). \\ \hline fvee Y \in (x, x). \\ \hline \\ \hline \\ Pf: \cdot Prove twe (ase that $x > a, X \in La, b].$ We will show that, $\exists Y \in (a, x), s.t.$ $f(x) - P_{a,n-1}(x) = \frac{f''(t)}{n!} (x-d)^n$. $f(x) - P_{a,n-1}(x) = \frac{M_{-1}}{n!} (x-d)^n$. $(t+a)^n$.$$

 $g^{(n-1)}(\alpha) = g^{(n-1)}(\gamma_{n-1}) = 0 \implies \exists \gamma_n \in (\alpha, \gamma_{n-1}), \text{ s.t. } g^{(n)}(\gamma_n) = 0.$ $p = 0 :: \deg p \in n-1.$ $N_{\text{DW}}, \quad g^{(n)}(t) = f^{(n)}(t) - p^{(n)}_{g(n-1)}(t) - M$ $\frac{1}{2} \left(\begin{pmatrix} \gamma_n \end{pmatrix} = 0 = \int^{(n)} (\gamma_n) - M \right)$ Thus, let V=Vn, we are done.