1. Reviews about differentiation:

- Def: $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}$
- Rok : it may be that $f^{\prime}(x)$ exists everywhere, but f^{\prime} is not continuous. $f(x)= \begin{cases}x^{2} \cdot \sin \left(\frac{1}{x}\right) & x>0 \\ 0 & x \leq 0\end{cases}$

$$
f^{\prime}(x)=\left\{\begin{aligned}
x^{2}\left(-\frac{1}{x^{2}}\right) \cos \left(\frac{1}{x}\right)+2 x \cdot \sin \frac{1}{x}, x & >0 \\
\underbrace{0}_{0} \leftarrow_{\text {definition. }}^{\text {using }} & x=0 \\
0 & \quad \because \quad \lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h-0}=0 .
\end{aligned}\right.
$$

- Mean Value Thmi if $f:[a, b] \rightarrow \mathbb{R}$ cts, f^{\prime} exist on (a,b).

Then (1) if $f(a)=f(b)$, then $\exists c \in(a, b)$. s.t. $f^{\prime}(c)=0$.

$$
\sim^{f(c)=0} f f(x)
$$

(2) Generlival muT.
(3) (common) MTV. $\quad f(b)-f(a)=(b-a) \cdot f^{\prime}(c)$.

- Intermediate Value Tho:

if $f^{\prime}(a)<f^{\prime}(b)$, then $\forall \mu^{\text {strictly }}$ between $f^{\prime}(a)$ and $f^{\prime}(b)$.

$$
\exists c \in(a, b), \quad \text { s.t. } \quad f^{\prime}(c)=\mu \text {. }
$$

Q: if $f^{\prime}(a)=f^{\prime}(b)=0$, is it possible to have a $c \in(a, b)$, such that $\quad f^{\prime}(c)=0$?

$$
f_{b}^{\prime}(c)<0, \quad \forall c \in(a, b)
$$

Ans: No.
(4) L'Hspital rule:

Today: Higher derivatives, Taylor expansion. Taylor The. Power Series. Def (Higher derivative)

- If $f:[a, b] \rightarrow \mathbb{R}$ has derivatives $\forall x \in[a, b]$, and if $f^{\prime}(x)$ is again differentiable at all pts, then we define $f^{\prime \prime}(x)=\left(f^{\prime}\right)^{\prime}(x)$.

Similarly, the n-th derivative $f^{(n)}(x):=\left(f^{(n-1)}\right)^{\prime}(x)$ if the RHS exist.

- Short notations: $f^{(0)}=f, \quad f^{(1)}=f^{\prime}, \quad f^{(2)}=f^{\prime \prime}, f^{(3)} \ldots$

Ex: (1) $\quad f(x)=x^{n}, \quad f^{\prime}(x)=n \cdot x^{n-1}, \quad f^{\prime \prime}(x)=n(n-1) \cdot x^{n-2}, \cdots$ $n \in \mathbb{Z}$. $\left\{\begin{array}{l}\text { actually } n \text { can be any real numbers, in that } \\ \text { case, we restrict } x>0 .\end{array}\right.$ e.g. $\left.x^{\frac{1}{2}}=\sqrt{x} . ~\right) ~$
(2). $f(x)=e^{x}, \quad f^{\prime}(x)=e^{x}, \cdots \quad f^{(n)}(x)=e^{x}$.

Those are examples, where derivatives exists to all order. i.e. $\forall x \in \operatorname{domain}(f)$, $f^{(n)}(x)$ exists. $\forall n \in \mathbb{N}$. We call such functions. smooth functions..

Move Ex: (1) $f(x)= \begin{cases}0 & x \leqslant 0 \\ e^{-\frac{1}{x}} & x>0\end{cases}$
I claim: $f(x)$ is smooth $\forall x \in \mathbb{R}$. It is clear $\forall x \neq 0$.
We need to check that $f^{(n)}(0)$ exists, and equals

$$
\lim _{x \rightarrow 0} f^{(n)}(x)=0 . \quad \because \lim _{x \rightarrow 0^{-}} f^{(n)}(x)=0 . \quad \therefore \text { we need to show }
$$

that $f^{(n)}(0)=0$, and $\lim _{x \rightarrow 0^{+}} f^{(n)}(x)=0$
for $x>0$,

$$
\begin{aligned}
& f^{\prime}(x)=\left(e^{-\frac{1}{x}}\right)^{\prime}=\left(-\frac{1}{x}\right)^{\prime} \cdot\left(e^{-\frac{1}{x}}\right)=\frac{1}{x^{2}} \cdot e^{-\frac{1}{x}} \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}} \cdot e^{-\frac{1}{x}}=0 . \\
& e^{-\frac{1}{x}} \rightarrow 0 \\
& x^{2} \rightarrow 0
\end{aligned}
$$

Lemma : $\forall k \in \mathbb{N}, \quad \lim _{u \rightarrow \infty} u^{k} \cdot e^{-u}=0$.
$p f:$ - refer to the section on seq. \&. (imit

$$
\begin{aligned}
& \cdot 0 \leq \lim _{u \rightarrow \infty} \frac{u^{k}}{e^{u}}=\lim _{u \rightarrow \infty} \frac{u^{k}}{1+u+\frac{u^{2}}{2!}+\cdots+\frac{u^{k}}{k!}+\frac{u^{k+1}}{(k+1)!}+\cdots} . \\
& \leq \lim _{u \rightarrow \infty} \frac{u^{k}}{1+\cdots+\frac{u^{k}}{k!}+\frac{u^{k+1}}{(k+1)!}} \leq \lim _{u \rightarrow \infty} \frac{u^{k}}{\frac{u^{k+1}}{(k+1)!}}=0 \\
& \text { Apply this Lemma to } \lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}} e^{-\frac{1}{x}}=\lim _{u \rightarrow \infty} u^{2} \cdot e^{-u}=0 . \\
& \begin{array}{c}
x=\frac{1}{x} \\
u
\end{array}
\end{aligned}
$$

Hence $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=0$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=0 . \\
& f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h-0}=\left\{\begin{array}{l}
\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h-0}=0
\end{array}\right.
\end{aligned}
$$

$$
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h-0}=\lim _{h \rightarrow 0^{+}} \frac{1}{h} \cdot e^{-\frac{1}{h}}=0
$$

Indeed. $\quad f^{\prime}(x)= \begin{cases}0 & x \leqslant 0 \\ \frac{1}{x^{2}} \cdot e^{-\frac{1}{x}} & x>0\end{cases}$

In general, one can prove the following by induction.

$$
f^{(n)}(x)=\left\{\begin{array}{cl}
0 & x \leqslant 0 \\
\frac{P_{n}\left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x}}}{\uparrow_{\text {polynomial }} \text { in } \frac{1}{x}}
\end{array}\right.
$$

(2)." smooth step function it is a smooth fcn

$$
g(x)=\left\{\begin{array}{cl}
0 & x \leqslant 0 \\
\in(0,1) & x \in(0,1) \\
1 & x \geqslant 1
\end{array}\right.
$$

Here is concrete construction:

$$
\begin{aligned}
& \text { concrete } \\
& g(x)=\frac{f(x)}{f(x)+f(1-x)}
\end{aligned}
$$

To see that $g(x)$ is smooth, we note both denominator \& numerator are smooth, and denominator is nowhere vanishing.
Lemma: if $\alpha(x), \beta(x)$ are smooth on \mathbb{R}, and. $\beta(x) \neq 0$ then $\alpha(x) / \beta(x)$ is smooth.
Pf: $\left(\frac{\alpha}{\beta}\right)^{\prime}=\frac{\alpha^{\prime} \beta-\beta^{\prime} \alpha}{\beta^{2}} \quad$ let $\alpha_{1}=\alpha^{\prime} \beta-\beta^{\prime} \alpha$
then α_{1}, β_{1} are smooth, and $\beta_{1}^{(x)} \neq 0 . \forall x$.
\rightarrow define α_{n}, β_{n} recursively as $\left(\frac{\alpha_{n-1}}{\beta_{n-1}}\right)^{\prime}=\frac{\alpha_{n}}{\beta_{n}}$.
so. $(\alpha / \beta)^{(n)}$ exists for all $n \in \mathbb{N}$.

$$
\begin{aligned}
& \text { So. exists for all } n \in \mathbb{N} . \\
& g(x)=\left\{\begin{array}{lll}
0 & x \leqslant f(x)=0 . & g(x)=\frac{f(x) .}{f(x)+f(1-x)} \\
\in(0,1) & x \in(0,1) . \\
=\frac{f(x)}{f(x)+0}=1 & x \geqslant 1 & \because f(1-x)=0
\end{array}\right.
\end{aligned}
$$

(3). "smooth bump

$$
g(x)=\left\{\begin{array}{cc}
0 & x \leqslant 0 \\
>0 & x \in(0,1) . \\
0 & x \geqslant 1
\end{array}\right.
$$

One way to construction: merge 2 smooth steps.

then rescale horizontally, to make it fit over $[0,1]$.

Another method:

$$
g(x)=\frac{f(x) f(1-x)}{f(x)+f(1-x)}
$$

Taylor Theorem:

Non- rigorous statement:
Say $f(x)$ is smooth $\forall x \in \mathbb{R}$, and pick any $\alpha \in \mathbb{R}$. then $\quad f(x)=\sum_{n=0}^{\infty} f^{(n)}(\alpha) \cdot \frac{1}{n!} \cdot(x-\alpha)^{n}$.

This works for $f(x)=e^{x}, \quad \sin x, \quad x^{n}, \oplus \cdots$
But is this true for all smooth functions?
Ans: No. take $f(x)$ to be the $\begin{cases}0 & x \leqslant 0 \\ e^{-\frac{1}{x}} & x>0 .\end{cases}$
take $\alpha=0$. Then $f^{(n)}(\alpha)=0 . \forall n \stackrel{0}{=} 1,2, \ldots$
Hence $\quad \sum_{n=0}^{\infty} f^{(n)}(\alpha) \frac{1}{n!}(x-\alpha)^{n}=0 . \quad \forall x \in \mathbb{R}$
but certainly $f(x) \neq 0$ for $x>0$, so, (*) is not true. in this case.

Thm: Let $f:[a, b] \rightarrow \mathbb{R}$ be a function, such that $f^{(n-1)}(x)$ exists and continuous on $[a, b]$. and $f^{(n)}(x)$ exists on (a, b). Then for any $\alpha, \beta \in[a, b]$, we have.

$$
\begin{aligned}
f(\beta)= & f(\alpha)+f^{\prime}(\alpha) \cdot(\beta-\alpha)+\frac{f^{\prime \prime}(\alpha)}{2!}(\beta-\alpha)^{2}+\cdots+\frac{f^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n-1} \\
& +R_{n}(\alpha, \beta) . \\
& R_{n}(\alpha, \beta)= \begin{cases}0 & \text { if } \alpha=\beta \\
\frac{f^{(n)}(\gamma)}{n!}(\beta-\alpha)^{n} & \text { if } \alpha \pm \beta \text {. for } \\
\text { some, } \gamma \in(\alpha, \beta) \text { or } \gamma \in(\beta, \alpha)\end{cases}
\end{aligned}
$$

where

If we introduce notation

$$
\begin{aligned}
& P_{\alpha, m}(x)=\sum_{k=0}^{m} \frac{f^{(k)}(\alpha)}{k!}(x-\alpha)^{k} . \text { notation }
\end{aligned}
$$

the " m-th" order Taylor expansion of f at α, then the above is

$$
\begin{aligned}
& \text { bore is } \\
& f(x)-P_{\alpha, n-1}(x)=\frac{f^{n}(\gamma)}{n!}(x-\alpha)^{n} \text {. for some } \gamma \text {. }
\end{aligned}
$$ between x and α.

Given a smooth function $f(x)$ on \mathbb{R} how to describe $f(x)$ near $x=\alpha$?

To the 0 -th order, we use value of f at $x=\alpha$, i.e. $f(\alpha)$.

$$
P_{\alpha, 0}(x)=f(\alpha) \text {. const } f(n \text {. }
$$

To the lest order., we use.

$$
\begin{aligned}
& P_{\alpha, 1}(x)=f(\alpha)+f^{\prime}(\alpha)(x-\alpha) \\
& \text { then } \quad\left\{\begin{array}{l}
P_{\alpha, 1}(\alpha)=f(\alpha) \\
P_{\alpha, 1}^{\prime}(\alpha)=f^{\prime}(\alpha)
\end{array}\right.
\end{aligned}
$$

linear fun.

To the moth order, if we know $f(\alpha), \cdots, f^{(m)}(\alpha)$. then we can use $P_{\alpha, m}(x)$, a deg m polynomial in x, sot.

$$
P_{\alpha, m}^{(k)}(\alpha)=f^{(k)}(\alpha) \quad k=0,1, \cdots, m .
$$

Q2: How to measure the error between the approximation \& the actual. function? error of const approx

$$
\begin{aligned}
& f(x)-P_{\alpha, 0}(x)=f(x)-f(\alpha)=(x-\alpha) \cdot \\
& \begin{array}{l}
f^{\prime}(\gamma) \\
\text { by MUT. }
\end{array} \quad \text { for } \gamma \text { between } \\
& x \text { and } \alpha .
\end{aligned}
$$

- error for linear approx?

$$
f(x)-P_{\alpha, 1}(x)=f(x)-f(\alpha)-f^{\prime}(\alpha)(x-\alpha) \stackrel{?}{=}(x-\alpha)^{2} \cdot \frac{f^{\prime \prime}(\gamma)}{2!}
$$

for $\gamma \in(x, \alpha)$.

Pf: Prove the case that $x>\alpha, \quad x \in[a, b]$. We will show that, $\exists \gamma \in(\alpha, x)$, sit.

$$
f(x)-P_{\alpha, n-1}(x)=\frac{f^{(n)}(\gamma)}{n!}(x-\alpha)^{n} .
$$

Let M be the const, such that

$$
f(x)-P_{\alpha, n-1}(x)=\frac{M}{n!}(x-\alpha)^{n} .
$$

(this ar exists, since $x \neq \alpha$.).

Define, $\quad g(t)=f(t)-P_{\alpha, n-1}(t)-\frac{M}{n!}(t-\alpha)^{n}$.
(recall, α and x are fixed).
Then. $g(\alpha)=f(\alpha)-P_{\alpha, n-1}(\alpha)-0=0$

$$
g(x)=f(x)-P_{\alpha, n-1}(x)-\frac{M}{n!}(x-\alpha)^{n}=0 \quad \because \text { by choice. }
$$

Also, for $k=1,2, \cdots, n-1$.

$$
\begin{aligned}
g^{(k)}(\alpha) & =f^{(k)}(\alpha)-P_{\alpha, n-1}^{(k)}(\alpha)-\frac{M}{n!} n(n-1) \cdots(n-1+k) \cdot(\alpha-\alpha)^{n-k} \\
& =0
\end{aligned}
$$

Then

$$
\begin{array}{lll}
g(\alpha)=g(x)=0 & \Rightarrow \exists \gamma_{1} \in(\alpha, x), & \text { sit. } g^{\prime}\left(\gamma_{1}\right)=0 \\
g^{\prime}(\alpha)=g^{\prime}\left(\gamma_{1}\right)=0 & \Rightarrow \exists \gamma_{2} \in(\alpha, x), & \text { sit. } g^{2(2)}\left(\gamma_{2}\right)=0
\end{array}
$$

$$
g^{(n-1)}(\alpha)=g^{(n-1)}\left(\gamma_{n-1}\right)=0 \Rightarrow \exists \gamma_{n} \in\left(\alpha, \gamma_{n-1}\right) \text {, sit. } g^{(n)}\left(\gamma_{n}\right)=0 \text {. }
$$

$\lambda=0 \because \operatorname{deg} p \leq n-1$.
Now. $\quad g^{(n)}(t)=f^{(n)}(t)-P_{d / n-1}^{(n)}(t)-M$

$$
\therefore \quad g^{(n)}\left(\gamma_{n}\right)=0=f^{(n)}\left(\gamma_{n}\right)-M .
$$

Thus, let $\gamma=\gamma_{n}$, we are done.

