Last time:

- Taylor expansion. (finite term expansion with remainder) Taylor series (infinite terms sum. no remainder).
- For simplicity, assume that $f:[a, b] \rightarrow \mathbb{R}$ is smooth. (ie $\forall x \in[a, b], \quad \forall n \in\{1,2, \cdots\}, \quad f^{(n)}(x)$ exists).
" N-thorder. Taylor expansion of f at (base) point $x_{0} \in[a, b]$. is. $\quad P_{x_{0}, N}(x)=\sum_{n=0}^{N} f^{(n)}\left(x_{0}\right) \cdot \frac{1}{n!}\left(x-x_{0}\right)^{n}$

Taylor Theorem says:

$$
f(x)-P_{x_{0}, N}(x)=\frac{f^{(N+1)}(\xi)}{(N+1)!}\left(x-x_{0}\right)^{N+1}
$$

for some $\xi \in\left(X, X_{0}\right)$ a number between X and X_{0}. I.f course, if $x=x_{0}$, then $f\left(x_{0}\right)=P_{x_{0}, N}\left(x_{0}\right)$.

- Taylor series: Let $N \rightarrow \infty$. We "formally" write.

$$
P_{x_{0}}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

Taylor series. at x_{0}.

This is an example of power series., whose general form is.
(*):

$$
\sum_{n=0}^{\infty} C_{n} \cdot\left(x-x_{0}\right)^{n} \quad C_{n} \in \mathbb{R}
$$

Q: for what value of x, is the above series. convergent?

Poop: (The 3.39 Rudin). Consider power series $\Sigma_{n} \cdot C_{n} \cdot Z^{n}$.
put $\alpha=\limsup _{n \rightarrow \infty}\left|c_{n}\right|^{\frac{1}{n}}$. Let $R=\frac{1}{\alpha}$.
(if $\alpha=0$, then $R=+\infty$; if $\alpha=+\infty$, then $R=0$).
Then. the series is convergent if $|z|<R$.; and the series is divergent if $|z|>R$.

TRuk: if $|z|=R$, we don't know, it depends.

Pf: Use the root test for absolute convergeme.
If $|z|<R$, then. $\left|c_{n} \cdot z^{n}\right|^{\frac{1}{n}}=\left|c_{n}\right|^{\frac{1}{n}} \cdot|z|$.

$$
\therefore \quad \limsup _{n \rightarrow \infty}\left|c_{n} z^{n}\right|^{\frac{1}{n}}=\alpha \cdot|z|<1 . \quad \therefore \sum\left|c_{n} z^{n}\right| \text { is convergent }
$$

$\therefore \quad \sum c_{n} z^{n}$ is convergent (absolute convergence \Rightarrow conc.).
If $|z|>R$, one can show $\left|c_{n} z^{n}\right|$ does not converge to 0 .

Thus, we can talk about convergence of Taylor series.

Ex: $\quad f(x)=\frac{1}{1+x^{2}}$, we want to find its
Taylor series a based at $x_{0}=0$.

- instead of computing $f^{(n)}(0)$, and use the formula.

$$
\sum \frac{f^{(n)}(0)}{n!} x^{n}
$$

we directly manipulate

$$
\begin{aligned}
\forall\left|x^{2}\right| \leq 1, \quad \frac{1}{1+x^{2}} & \cong \frac{1}{1-\alpha}=1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4} \cdots \quad \alpha=-x^{2} . \\
& =1+\left(-x^{2}\right)+\left(-x^{2}\right)^{2}+\left(-x^{2}\right)^{3}+\cdots \\
& =1-x^{2}+x^{4}-x^{6} \cdots+\left(-x^{2}\right)^{n}+\cdots
\end{aligned}
$$

This is the Taylor expansion at $x_{0}=0$.

- Radius of convergence? This series make sense if $|x|<1$. This series is divergent if $|x|>1$, since $x^{2 n}$ would not converge to $0 . \Rightarrow$ Radius of Convergence $R=1$.
we can also use root test. $\left|C_{n}\right|=\left\{\begin{array}{lll}0 & n \text { odd } \\ 1 & n \text { even. }\end{array}\right.$ $\lim _{n \rightarrow \infty} \sup _{n}\left|c_{n}\right|^{\frac{1}{n}}=1=\alpha \quad R=\frac{1}{\alpha}=1$.

Say f is smooth function.
Warning: (1) Even if $P_{x_{0}}(x)$ series is convergent for $\left|x-x_{0}\right|<R$, it does not mean

$$
f(x)=P_{x_{0}}(x) \quad \text { for } \quad\left|x-x_{0}\right|<R .
$$

Ex: $\quad f(x)$ smooth, sit.

$$
\left.f(0)=0, \quad f^{\prime}(0)=0, \quad f^{\prime \prime}(0)=2, \quad f^{(3)}(0)=0, \cdots f_{(0)}^{(4)}\right)
$$

there exist a function satisfies the above data: namely. $\quad x^{2}$.
But there exists more than one smooth fou, satisfying these.

$$
x^{2}+\varphi(x)
$$

$$
\varphi(x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
e^{-\frac{1}{x}} & x>0 .
\end{array}\right.
$$

this also satisfies the above.

Aside: . If a smooth function $f(x)$ satisfies the condition that. $\quad \forall x_{0} \in(a, b), \quad \exists r_{0}>0$, s.t.

$$
f(x)=P_{x_{0}}(x) \quad \forall \quad\left|x-x_{0}\right|<r_{0}
$$

then we say $f(x)$ is a (real) analytic function.
Ex: $\sin (x), \cos (x), e^{x}, \quad$ polynomials are real analytic and "Combinations" $(+,-, f(g(x)), \cdots)$
(N-th order)

- Taylor expansion is a way to approximate a smooth function near a given point. But the approximation is not uniform over the entire domain of f. Other ways of approximation methods exist, Weierstrass Approximation Thu: If f is a continuous function on $[a, b]$., then $\exists a$ sequence of polynomial $f_{n}(x)$, such $f_{n} \rightarrow f$ uniformly on $[a, b]$. (see Ross for a proof).
Riemann - Stieltjes Integral (Rudin Ch).
- Motivation: measure area of some irregular shape. rectangle

trapezoid.

$$
\text { Area }=\frac{1}{2} a \cdot b \text {. }
$$

$$
\text { Area }=\frac{a_{1}+a_{2}}{2} \cdot b
$$

Area $=\pi \cdot r^{2}$.
To derive this formula, one can cut the disk to "pizza slices." and get

$$
\begin{aligned}
\text { area } & =\frac{1}{2} \text { (circumference) } \cdot \text { (height of the slice) } \\
& =\frac{1}{2} \cdot(2 \pi r) \cdot r=\pi r^{2} .
\end{aligned}
$$

General method: cut the original shape in to smaller, but "mure standard" shape, and add them up.

Intuitively: " if $f:[a, b] \rightarrow \mathbb{R}$ is a "nice" function, then $\int_{a}^{b} f(x) \cdot d x$ is the area "under" the graph. of f.

- is this a "nice" \& function?

- uniformly continuous?
- How to get approximations to the "area" under the graph?

One way to define area, is to approximations, and prose that the approximations (as the precision gets better \& better), converge to something.

- cut the domain into equal size bins.
- replace the curve by trapezoid, and measure the area. of each trapezoid. and take limit that hin size $\rightarrow 0$.

Doubt: (1) why do we need "equal size" cutting? (2) why do weed the trapezoid approximation?

This is a plausible algorithm, but it is not a definition of the area, since it involves "arbitrary" choice.

Def: (Partition) Let $[a, b] \subset \mathbb{R}$ be a closed interval. A partition P of $[a, b]$, is finite set of number in $[a, b]$:

$$
a .=x_{0} \leq x_{1} \leq x_{2} \leqslant \cdots \leqslant x_{n}=b
$$

Define $\quad \Delta x_{i}=x_{i}-x_{i-1}, \quad i=1,2, \cdots, n$.

- We will consider $f:[a, b] \rightarrow \mathbb{R}$. real and bounded. (may not be continuous). standing assumption.
if f is continuous, and f is defined on a $[a, b]$. then $f([a, b])$ is compact, hence bounded.

$$
f(x)=\left\{\begin{array}{ll}
0 & x \leq 0 \\
1 / x & x>0 .
\end{array} \text { on }[-1,1] .\right.
$$

is a real valued function on $[-1,1]$, but unbounded. Hence, we will NOT consider such function.

- Given $f:[a, b] \rightarrow \mathbb{R}$ bounded, and partition $P=\left\{x_{0} \leq x_{1} \leq \cdots \leq x_{n}\right\}$ we define

$$
U(P, f):=\sum_{i=1}^{n} \Delta x_{i} \cdot M_{i}, \quad M_{i}=\sup \left\{f(x) ; x \in\left[x_{i=1}, x_{i}\right]\right\}
$$

$$
L(P, f):=\sum_{i=1}^{n} \Delta x_{i} \cdot m_{i}, \quad m_{i}=\inf \left\{f(x) ; x \in\left[x_{i-i}, x_{i}\right]\right\}
$$

$$
\pi \overline{\int_{a}^{b}} f d x
$$

- Definition:

Since f is bounded, hence, $\exists m, M \in \mathbb{R}$, sit.

$$
m \leqslant f(x) \leqslant M \quad \forall x \in[a, b] .
$$

$\therefore \forall P$ partition of $[a, b]$,

$$
\begin{aligned}
& \quad U(P, f)=\sum_{i=1}^{n} \Delta x_{i} \cdot M_{i} \leqslant \sum_{i=1}^{n} \Delta x_{i} \cdot M \\
& L(P, f) \geqslant m \cdot \sum_{i=1}^{n} \Delta x_{i}=M \cdot(b-a) . \\
& m(b-a) \leqslant L(p, f) \leqslant U(p, f) \leqslant M(b-a)
\end{aligned}
$$

$$
L(P, f) \geqslant m(b-a)
$$

We say a function f is Riemann integrable: if

$$
u(f)=L(f) .
$$

Q: Which functions are Riemann integrable over $[a, b]$?

$$
\begin{aligned}
& U(f):=\inf _{P} U(P, f) \text { partition } \cdot f\{a, b\} \\
& L(f):=\sup _{P_{\text {partition }}} L(P[a, b] \text {. } \\
& \int_{a}^{b} f d x .
\end{aligned}
$$

Some sufficient conditions:
(1) if f is continuone, then $\int f d x$ exists. $\Rightarrow \quad x \cdot \sin \left(\frac{1}{x}\right)$. over $[0,1]$ is integrable.
(2) if f is monotone, the $\int f d x$ exists.

Next time: - Riemann- Stieltje integral.

