1. Let
$$\frac{f}{2} f_{n}$$
: $(a, b] \rightarrow \mathbb{R}$ be a set of real valued functions.
We say $f_{n} \rightarrow f$ containing uniformly converted. if
 $\lim_{n \rightarrow \infty} (s_{efful}) f_{n}(n - f(n)) = 0$
If f_{n} continuous, $f_{n} \rightarrow f$ unif, then f is continuous.
Question: If f_{n} are integrable (or differentiable),
is f also integrable (or differentiable, resp)?
Thus 216. (Radin). Let α be a monotone increasing for on.
Let f_{n} be a set of four on $(a, b]$. $f \in \mathbb{R}(\alpha)$.
Assume $f_{n} \rightarrow f$ uniformly. Then $f \in \mathbb{R}(\alpha)$, and
 $\int_{0}^{n} f da = \lim_{m \rightarrow \infty} \int_{0}^{m} da$.
 $f_{n} = \int_{m \rightarrow \infty}^{m} \int_{0}^{m} da$.
 $f_{n} = \int_{m \rightarrow \infty}^{m} \int_{0}^{m} da$.
 $f_{n} = f(n) < g + f_{n} < n$.
Let f_{n} be a set of $f(n) < n < (a, b]$.
 $f = \int_{0}^{m} f da = \lim_{m \rightarrow \infty} \int_{0}^{m} da$.
 $f_{n} = \int_{0}^{m} (n) < (a + f_{n}) <$

Cor: If {fn} is a seq of integrable for wirt. d. and if $\sum_{n=1}^{10} f_n(x)$ converges uniformly, then. $\int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx.$ Pf: consider the partial som $F_N(x) = \sum_{n=1}^{N} f(x)$, and opphy the theorem. Unif Conv. and Differentiation: • Ex: • {fn}, differentiable, fn-> f aniformly, but f is not differentiable. $f(x) = \int \chi^2 + \frac{1}{h} \chi |\chi|$ Hable V. $f_n \rightarrow |x|$ uniformly. $\int x^2 + \frac{1}{n} - \int x^2 = \frac{1}{n} \frac{1}{\sqrt{n}} \leq \frac{1}{n} / \frac{1}{\sqrt{n}}$ $\int x^2 + \frac{1}{n} + \int x^2 = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}}.$ $f_n: different table V.$ $f_n \rightarrow |x|$ $\rightarrow D$. $f_{1}(x) = \log(1+e^{x}).$ $f_n(x) = \frac{1}{n} \log \left(1 + e^{nx} \right)$ $f_{\mu}(x) \longrightarrow \max \{0, x\}$ $t_{\mu} \log 1 \quad t_{\mu} \log (e^{\mu x}).$ $f'_{n}(x) = n \cdot \cos(n^2 \chi)$ $f_n(x) = \frac{1}{n} \cdot \sin(n^2 \cdot \chi).$ for converges uniformy, fu'(x) doesn't converge.

Then: Lat
$$f_n$$
 be a sequence of differentiable f_{cn} on $[a, b]$,
assume that $O = 2\pi c c [a, b]$, s.t. $f_n(x_0) \rightarrow C$
(a) $f_n(x) = C$ (onverges uniformly on $[a, b]$.
Then, $f_n \rightarrow f$ uniformly, and $f'(x) = \lim_{n \to \infty} f'_n(x) \forall x \in [a])$
Then, $f_n \rightarrow f$ uniformly, and $f'(x) = \lim_{n \to \infty} f'_n(x) \forall x \in [a])$
 $[Ex: f_n(x) = (a + \frac{1}{n}) + (3 + \frac{1}{n}) \cdot \chi$
Over $[-b, 1]$, we have $f_n \rightarrow f$
(uniformly, $[de_{a}: use integration x + x > x_0, - x > N = net f(x)]$
 $p_{1}: Fix s > 0, f(x) = f_{1}(x_{2}) + \int_{x}^{\infty} f(x) dt$
 $D \forall n, m > N$,
 $[f_n(x_{0}) - f_{1n}(x_{2})] < \frac{s}{2}$ we don't know if f' is
 $[uniformly, Unitegrable or net.$
(b) $t \notin n = publem is $t \ln dx_{1}$
 $uniformly = f_{1}(x_{2}) - f'_{1}(x_{2})] < \frac{s}{2}(b-d)$
Fix $n, m > N$. Let $f_{n,m}^{(N)} := f_{n}(x) - f_{m}(x)$.
Apply mean value theorem to $f_{n,m}(x)$, on an intermal
 $[x, t] (if x < t)$ or $(Et, x]$, if $t < x)$ in $[a, b]$.
For $s \in (x, t)$. Since $|f'_{n,m}(s)| < \frac{s}{2}(b-d)$, we have,$

Hence. 39n3 is uniformly Cauchy for $t \in [ab] \setminus \{x\}$. $\exists \phi_n \rightarrow \phi$ uniformly. Hence $\lim_{t \to x} \phi(t) = \lim_{t \to x} \lim_{h \to \infty} \phi_h(t) = \lim_{h \to \infty} \lim_{h \to \infty} \phi_h(t) = \lim_{h \to \infty} \int_h(x).$ the existence $-\int \lim_{x \to \infty} \frac{f(t) - f(x)}{t - x}$ shows f'(x) exist. Henve $f'(x) = \lim_{t \to x} \phi(t) = \lim_{t \to \infty} f'_n(x).$ #