Differentiation / Derivation:
$\left\{\begin{array}{l}\text { definition / example / } \\ \text { Leibniz rule / chain } \\ \text { mean value property. }\end{array}\right.$

- Def: Let $f:[a, b] \rightarrow \mathbb{R}$. We say f is differentiable at a point $p \in[a, b]$, if the limit exists

$$
\lim _{x \rightarrow p} \underbrace{\frac{f(x)-f(p)}{x-p}} \text { \& this is a function on }[a, b] \backslash\{p\} \text { of }
$$

we denote this by $f^{\prime}(p)$.

Let $f:[a, b] \rightarrow \mathbb{R}$.
Prop: If f is diff'ble at $p \in[a, b]$, then f is continuous at p.

Pf: We only need to show $\lim _{x \rightarrow p} f(x)=f(p)$.

$$
\begin{aligned}
& \Leftrightarrow \quad \lim _{x \rightarrow p}(f(x)-f(p))=0 \quad{ }_{x \rightarrow p} \\
& \Leftrightarrow \quad \lim _{x \rightarrow p}\left(\frac{f(x)-f(p)}{x-p}\right) \cdot(x-p)=0 \\
& \Leftrightarrow \quad \lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p}=f^{\prime}(p) \quad \text { exists } \\
& \because \quad \lim _{y \rightarrow p}\left(\frac{f(x)-f(p)}{x-p} \cdot(x-p)\right)=\left(\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p}\right) \cdot\left(\lim _{x \rightarrow p}(x-p)\right) \\
& =f^{\prime}(p) \cdot 0=0 .
\end{aligned}
$$

Prop: If $f(x)$ is differentiable at p, then $\exists u(x)$, s.t.

$$
f(x)=f(p)+(x-p) \cdot f^{\prime}(p)+\underbrace{(x-p) u(x)}_{\text {remainder }} .
$$

where $\lim _{x \rightarrow p} u(x)=0$.
Pf: define $u(x)=\left\{\begin{array}{cl}\frac{f(x)-f(p)}{x-p}-f^{\prime}(p) & x \neq p \\ 0 & x=p .\end{array}\right.$

Ex:

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & x \in \mathbb{Q} \\
-x^{2} & x \in \mathbb{Q}^{c}
\end{array}\right.
$$

$f^{\prime}(0)$ exist., $f(x)$ is continuous at $x=0$.
$\forall x \neq 0$
$f^{\prime}(x)$ doesn't exist, $f(x)$ is not cont.
Ex: $\quad f(x)=\left\{\begin{array}{cc}x \cdot \sin \left(\frac{1}{x}\right) & x>0 \\ 0 & x \leq 0\end{array}\right.$

- f is contimuns everguhere.
- $f^{\prime}(x)$ exists for any $x \neq 0$.

Use definition: consider the differeme quotient (at $x=0$).

$$
\begin{aligned}
& g(x)=\frac{f(x)-f(0)}{x-0} \\
& g(x)=\left\{\begin{array}{lll}
\frac{x \sin \left(\frac{1}{x}\right)-0}{x-0}=\sin \left(\frac{1}{x}\right) . & x>0 \\
\frac{0}{x}=0 & x<0
\end{array}\right.
\end{aligned}
$$

$\lim _{x \rightarrow 0^{+}} g(x)$ does n't exist. $\Rightarrow f^{\prime}(0)$ does not exist.

- Ex: $f(x)= \begin{cases}x^{2} & x>0 \\ 0 & x \leqslant 0\end{cases}$

$$
f^{\prime}(x)=\quad / 2 x=f^{\prime}(x) \quad x>0
$$

- Q: if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and $f^{\prime}(x)$ exists at all $x \in \mathbb{R}$. Is it automatic that f^{\prime} is continuous?

Ans: No.

$$
\left.\begin{array}{l}
f(x)=\left\{\begin{array}{cc}
x^{2} \cdot \sin \left(\frac{1}{x}\right) . & x>0 \\
0 & x \leqslant 0
\end{array}\right. \\
f^{\prime}(0+)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0^{+}} x \cdot \sin \left(\frac{1}{x}\right)=0
\end{array}\right] \begin{aligned}
& f^{\prime}(0-)=0 \\
& \Rightarrow \quad f^{\prime}(0) \text { exists and } \quad f^{\prime}(0)=0 .
\end{aligned}
$$

for $x>0$,

$$
\begin{aligned}
& f^{\prime}(x)=2 x \cdot \sin \left(\frac{1}{x}\right)+2 x^{2} \cdot\left(\sin \left(\frac{1}{x}\right)\right)^{\prime} \\
&=2 x \cdot \sin \left(\frac{1}{x}\right)+x^{2}\left(-\frac{1}{x^{2}}\right) \cdot \cos \left(\frac{1}{x}\right) . \\
&=2 x \cdot \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) \\
& \lim _{x \rightarrow 0^{+}} f^{\prime}(x) \neq 0 .
\end{aligned}
$$

Prop: Let $f, g:[a, b] \rightarrow \mathbb{R}$. And assume f, g are diff'ble at p. Then
(1). $\quad(f+q)^{\prime}(p)=f^{\prime}(p)+g^{\prime}(p)$

Leibniz.
(2) $\quad(f \cdot g)^{\prime}(p)=f^{\prime}(p) g(p)+f(p) \cdot g^{\prime}(p)$
(3) If $g(p) \neq 0$, then. $(f / g)^{\prime}(p)=\frac{f^{\prime} g-f \cdot g^{\prime}}{g^{2}}$.

Pf:

$$
\begin{aligned}
& \text { (2): } \quad \lim _{x \rightarrow p} \frac{f(x) g(x)-f(p) \cdot g(p)}{x-p}=\lim _{x \rightarrow p .} \frac{f(x)(g(x)-g(p))+f(x) g(p)-f(p) \cdot g(p)}{x-p} \\
& =\lim _{x \rightarrow p} f(x) \cdot \frac{g(x)-f(p)}{x-p}+\lim _{x \rightarrow p} \frac{(f(x)-f(p))}{x-p} \cdot g(p) . \\
& =\quad f(p) \cdot g^{\prime}(p)+f^{\prime}(p) \cdot g(p) .
\end{aligned}
$$

assume $f\left(x_{0}\right)=y_{0}$, and f is diff'le \square at x_{0}, g is diff'ble at y_{0}. Then the composition $h(x)=g(f(x))$ is diff'ble at x_{0},

$$
h^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) \cdot f^{\prime}\left(x_{0}\right)
$$

Pf: $\lim _{x \rightarrow x_{0}} \frac{h(x)-h\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{x-x_{0}}$
Since $f^{\prime}\left(x_{0}\right)$ exist, we can write.
$\forall x \in \mathbb{R} . \quad f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\left(x-x_{0}\right) \cdot u(x)$

similarly. $\quad \underline{g}(y)=g\left(y_{0}\right)+g^{\prime}\left(y_{0}\right)\left(y-y_{0}\right)+\left(y-y_{0}\right) v\left(y_{1}^{\prime}\right.$:
and $\lim _{x \rightarrow x_{0}} u(x)=0, \quad \lim _{y \rightarrow y_{0}} v(y)=0_{2}$

$$
y_{0}=f\left(x_{0}\right) .
$$

Then. $\quad g(f(x))-g\left(y_{0}\right)=\left(f(x)-y_{0}\right) \cdot\left(g^{\prime}\left(y_{0}\right)+v(f(x))\right.$

$$
=\left(f(x)-f\left(x_{0}\right)\right)\left(g^{\prime}\left(y_{0}\right)+v(f(x))\right)
$$

$$
=\left(x-x_{0}\right)\left(f^{\prime}\left(x_{0}\right)+u(x)\right) \cdot\left(g^{\prime}\left(y_{0}\right)+v(f(x))\right)
$$

Hence $\lim _{x \rightarrow x_{0}} \frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}}\left[f^{\prime}\left(x_{0}\right)+u(x)\right]\left[g^{\prime}\left(f\left(x_{0}\right)\right)+v(f(x))\right]$.

$$
=f^{\prime}\left(x_{0}\right) \cdot g^{\prime}\left(f\left(x_{0}\right)\right)
$$

$$
y=\sqrt{x}
$$

Ex: $\quad f(x)=\left\{\begin{array}{rl}\sqrt{x} & x>0 \\ 0 & x \leq 0\end{array}\right.$
\#
. is f continuous at $x=0$? $\quad \lim _{x \rightarrow 0^{+}} f(x)=0=\lim _{x \rightarrow 0^{-}} f(x)$.
$f^{\prime}(0)$ doesn't exist. $f^{\prime}(x)$ exist $\forall x \neq 0$.

$$
f^{\prime}(x)=\left\{\begin{array}{cc}
\frac{1}{2} \frac{1}{\sqrt{x}} & x>0 \\
0 & x<0
\end{array}\right.
$$

$\forall p \in \mathbb{R}$:

$$
\cdot\left(x^{p}\right)^{\prime}=p \cdot x^{p-1} \quad(\text { for } \quad x>0) .
$$

- $\forall n \in \mathbb{N}, \quad\left(x^{n}\right)^{\prime}=n \cdot x^{n-1}$.

Mean Value Theorem.
Def: Let $f:[a, b] \rightarrow \mathbb{R} .\left(\begin{array}{c}\text { mad } \\ \text { not } \\ \text { ce } \\ \text { cont }\end{array}\right)$.
We soy $p \in[a, b]$ is
a local maximum of f
if there is a $\delta>0$, s.t.

$\forall x \in[a, b] \cap B_{\delta}(p)$, we have $\quad f(x) \leqslant f(p)$. there are local minimum.

Similarly, we can define local min....

Rok: it is possible that f is "locally constant" at P, then P is both a local max and local min.

Lemma: Let $f:[a, b] \rightarrow \mathbb{R}$. If p is a local maximum of $f, p \in(a, b)$, and $f^{\prime}(p)$ exists, then. $\quad f^{\prime}(p)=0$.

Pf: $\quad f^{\prime}(p)=\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p .}$.

Since p is a local max of $f, \exists \delta>0$, sit. $\forall x \in[a, h] \cap B_{\delta}(p$. $f(x) \leqslant f(p)$. Since $p \in(a, b)$., we may take δ even smaller, sit. $B_{\delta}(p) \subset[a, b]$. Then, if $x \in(p-\delta, p)$, then.

$$
\begin{aligned}
& \quad \frac{f(x)-f(p)}{x-p} \geqslant 0 \quad \because x-p<0, f(x)-f(p) \leq 0 . \\
& \Rightarrow \quad \lim _{x \rightarrow p^{-}} \frac{f(x)-f(p)}{x-p} \geqslant 0 . \\
& \text { Similarly, } \quad \lim _{x \rightarrow p^{+}} \frac{f(x)-f(p)}{x-p} \leqslant 0
\end{aligned}
$$

Since $f^{f^{\prime}(p)=\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p} \text { exists, } \therefore f^{\prime}(p) \geqslant 0, f^{\prime}(p) \leq 0}$

$$
\Rightarrow \quad f^{\prime}(p)=0
$$

Rue: why we need the condition $P \in(a, b)$. and $f^{\prime}(p)$

- P can be a local max, and $f^{\prime}(p)$ nou-existat.

$$
\text { e.f } f(x)=\xrightarrow[p]{\Upsilon}
$$

$$
\text { - } f(x)=\text { local max are at the endpoints. }
$$ the slope there are not zero.

Heme to use this Lemma, only "interior" local max can be used.

Thu (Rolle) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. assume $f^{\prime}(x)$ exists for all $x \in(a, b)$. If $f(a)=f(b)$, Then, $\exists c \in(a, b)$, such that $f^{\prime}(c)=0$.

Rue: © $[a, b] \subset \mathbb{R}$ is compact. hence $f([a, b])$ is compact.
(2). $f(x)=\sqrt{x(1-x)}$

Pf: (1). if $f([a, b])$ is a single point, then f is a const function, any $c \in(a, b)$ has $f^{\prime}(c)=0$.
(2) If $\max (f([a, b])) \neq f(a)$., then Let $p \in(a, b)$.
sit. $f(p)=\max (f([a, b]))$. Then by lemma.

$$
f^{\prime}(p)=0 . \quad \text { Let } c=p .
$$

(3) If $\min (f([a, b])) \neq f(a)$, then similar' argent shows $f^{\prime}(p)=0$.

Thm (Generalized Mean Value Theorem):
If $f, g:[a, b] \rightarrow \mathbb{R}$, are continuous, and differentiable on (a, b), then there exist $c \in(a, b)$, such that

$$
(*) \quad[f(b)-f(a)] \cdot g^{\prime}(c)=[g(b)-g(a)] \cdot f^{\prime}(c) \text {. }
$$

Pf: Define

$$
h(x)=[f(b)-f(a)][g(x)-g(a)]-[g(b)-g(a)][f(x)-f(a)]
$$

Then. $\quad h(a)=0, \quad h(b)=0$,
Hence, by Roller Thu $\exists c \in(a, b)$, sit. $h^{\prime}(c)=0$. $\Leftrightarrow(*)$ holds at c.

$$
h^{\prime}(x)=(f(b)-f(a)) g^{\prime}(x)-(g(b)-g(a)) f^{\prime}(x) \cdot \#
$$

The (Mean Value The): Let $f:[a, b] \rightarrow \mathbb{R}$. diff'ble on (a, b), then $\exists c \in(a, b)$, s.t.

$$
f(b)-f(a)=(b-a) \cdot f^{\prime}(c) .
$$

$P f:$ Use Genembiral MU.T., set $g(x)=x$.
\qquad

