Recall:
Then (Rolle): Let f: [a,b] → R continuous, and fl (a,b)
be differentiable. Then. if f(a) = f(b), we have C ∈ (a,b)
such that
$$f'(c) = 0$$
.
PG: If f(x) is a constant function, then for any c ∈ (a,b),
f'(c) = 0.
If f(x) is not a constant for, I to € (a,b), s.t.
secure f(to) = f(a), WLOG, f(to) > f(a),
Then. (bt $x_0 \in [a,b]$ be the point that realizes.
max $\hat{f}(b)$ | x ∈ Ia,b] be the point that realizes.
max $\hat{f}(b)$ | x ∈ Ia,b] be the point that realizes.
Max $\hat{f}(b)$ = 0. $f(x_0) > f(x_0) > f(a)$, hence
 $x_0 \neq a$, and $x_0 \neq b$, it. No $f(x_0) > f(a)$, bence
 $x_0 \neq a$, and $x_0 \neq b$, it. No $f(x_0) > f(a)$, bence
 $x_0 \neq a$, and $x_0 \neq b$. it. No $f(x_0) > f(a)$, bence
 $x_0 \neq a$, and $x_0 \neq b$. it. No $f(x_0) > f(a)$, bence
 $f(x_0) = 0$. Take $c = x_0$. $f(a)$
be const. for,
differentiable on (a,b). Then $\exists c \in (a,b] \rightarrow \mathbb{R}$ be const. for,
differentiable on (a,b). Then $\exists c \in (a,b)$. $y_0(a) - \hat{f}(a)$.
F(a) $f(a) - f(b) \cdot \hat{g}(c) = I g(a) - g(b) - \hat{f}(a)$.
F: Let $h(x) = [f(a) - f(b) \cdot [g(a) - g(a)] - [f(a) - f(a)][g(a) - g(b)]$
Then $h(a) = [f(a) - f(b) \cdot [g(a) - g(a)] - [f(a) - f(a)][g(a) - g(b)]$
 $= 0$
 $h(b) = [f(a) - f(b)] [g(b) - g(a)] - [f(a) - f(a)][g(a) - g(b)]$

So we may apply Polle Thm to
$$h(x)$$
, hence there exists.
a $C \in (a,b)$, such that $h'(c) = 0$.
 $\therefore h'(x) = [f(a) - f(b)] \cdot g'(x) - f'(x) [g(a) - g(b)].$
 $\therefore h'(c) = 0$ implies the desired equality (x) . \ddagger .

In the special case. that
$$g(a) = f(a)$$
, $g(b) = f(b)$,
then we are looking for a point $c\in(s,b)$.
fix $f(c) = g'(c)$.
This c we will be achieved, if
 $h(x) = f(x) - g(x)$ has a local max
or local min.
To see where $f'(c) = g'(c)$, we may shift the graph of
 g (up and down), to see the "point of tangony".
For $f(x)$.
Then : Let $f: Ta, bJ \rightarrow IR$ be continuous , and differentiable
over (a, b) . Then $\exists c \in (a, b)$, such that:

$$[f(b) - f(a)] = (b-a) - f'(c).$$

Apply the generalized M.V.T., with $g(x) = \chi$. <u>Pf</u>: #

Rmk: mean value theorem relates slope at a print to the difference of the values of the function. Cor: Suppose f: [a, b] -> R cont. f(x) exist for $x \in (a, b)$, and $|f'(x)| \leq M$ for some constant M. Then. f is uniformly continours. x<y $Pf: \forall \epsilon > 0$, we may take $S = \frac{\epsilon}{M}$. Then, $\forall x, y \in [a, b]$, we may apply MV.T for the internal (X,Y), and gets. $f(y) - f(x) = (y - x) \cdot f'(z)$, for some $Z \in (x, y)$. $|f(y) - f(x)| = |y - x| \cdot |f(z)| \leq S \cdot M \leq \varepsilon.$ Let Loc: f: [a, b] - R cont, and diff over (a, b). If $f'(x) \ge 0$ $\forall x \in (a, b)$, then f is monotone increasing (i.e. if y 2x, then fly) = flx). If $f'(x) = 70 \quad \forall x \in (a,b)$, then f is strictly increasing. Pf: exercise. A. Intermediate Value Theorem for d'érivatives. Ihm: Assume fix) is differentiable over [a, b], with f'(a) < f'(b), Then, for each $\mu \in (f'(a), f'(b))$ there exists a CE(a,b), site $f'(c) = \mu$. Rule: This does not follow from IVT for f'(x), since

f(x) may not be continuous.

<u>Pf</u>: (onsider $g(x) = f'(x) - M \cdot X$, then. $g'(a) = f'(a) - \mu < 0$, $g'(b) = f'(b) - \mu > 0$. Hence, a, b are not local minimum of g(x), (hence are not global minima). a b Let c be the global minimum of g(x) over [a, b], then $c \in (a, b)$, and g'(c) = 0. $\Rightarrow f'(c) = \mu.$ # L'Hopital Rule. Ex: (1)we call it the "O" type limit. The L'Hupital rules say, $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{x'} = \lim_{x \to 0} \frac{(\cos x)}{1} = \frac{\cos(x)}{1} = \frac{1}{1}$ х-Эр $(2) \cdot \lim_{X \to \infty} \frac{\log x}{X},$ both numerator and denominatur $\frac{\log x}{\chi} = \lim_{x \to \infty} \frac{(\log x)'}{\chi'} = \lim_{x \to \infty} \frac{1}{\chi} = 0.$ type.

By introducing new variables, we may reduce to the case that $g, f: (a, b) \rightarrow \mathbb{R}$. differentiable, we are interested in $\lim_{x \to a^+} \frac{\pm (x)}{g(x)}.$ <u>Thu</u>: Assume $f,g:(a,b) \rightarrow IR$ differentiable, $g(x) \neq 0$ over (a, b). If either of the following condition is the (1) $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = 0$. $\begin{array}{c|cccc} (2) & \lim_{x \to a} g(x) = +\infty \end{array}$ And if $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A \in \mathbb{R} \cup \{\pm, \infty, -\infty\}$ then $\lim_{x \to a} \frac{f(x)}{g(x)} := A$. Pf: Here we only consider the case that AER., the case A = + 10 cr - 10 is an exercise. $For any z >0, \exists S > 0, sit. \forall x \in (a, a+S),$ we have $\frac{f'(x)}{g'(x)} - A < \mathcal{E}$. $A - \varepsilon. < \frac{f'(x)}{g'(x)} < A + \varepsilon$ $\forall x \in (a, a+8)$ \models ali, b. $\forall a < a < \beta < a + \delta$, we have. $\gamma \in (d, \beta)$ a p. $[f(\beta) - f(\alpha)] \cdot g'(\delta) = [g(\beta) - g(\alpha)] f'(\delta).$

Then $f(\beta) - f(\alpha) = \frac{f'(\alpha)}{g(\beta) - g(\alpha)} = \frac{f'(\alpha)}{g'(\alpha)} \in (A - \varepsilon, A + \varepsilon).$ (*). if $g(p) \neq g(\alpha)$. $f(\alpha) = 0$. $\lim_{d \to \alpha} g(d) = 0$. $\lim_{d \to \alpha} f(\alpha) = 0$. Take limit of $\alpha \rightarrow a$, we have. $\lim_{\alpha \to a} \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} = \frac{f(\beta) - 0}{g(\beta) - 0} = \frac{f(\beta)}{g(\beta)} \in [A - \varepsilon, A + \varepsilon]$ Thus, HE70, we have found a SZO, s.t. HBE (a, a+S), <u>+(B)</u> E [A-E, A+E]. This is precisely the definition that g(p) $\lim_{\beta \to a} \frac{f(\beta)}{\partial(\beta)} = A.$ We pick $\beta \in (a, a+s)$, then pick $\alpha \in (a, \beta)$ and & is sufficiently close to a, such that. $\frac{g(a) - g(\beta)}{g(a)} > 0.$ 9(d) 7 g(b). 3 multiply $\frac{g(\alpha) - g(\beta)}{g(\alpha)}$ to (*). $(A-c) \frac{g(\alpha)-g(\beta)}{g(\alpha)} < \frac{f(\beta)-f(\alpha)}{g(\beta)-g(\alpha)} \cdot \frac{g(\alpha)-g(\beta)}{g(\alpha)} < (A+\varepsilon) \cdot \frac{g(\alpha)-g(\beta)}{g(\alpha)}$

 $\frac{f(\beta) - f(\alpha)}{q(\alpha)}$

Take limit $d \rightarrow a$, then. $\frac{g(a) - g(\beta)}{g(a)} \rightarrow 1$, (Hence. $A-\varepsilon. \leq \liminf_{\substack{f(\alpha) - f(\beta) \\ g(\alpha)}} \leq \limsup_{\substack{d \to \alpha}} \frac{f(\alpha) - f(\beta)}{g(\alpha)} \leq A+\varepsilon$ d→a Take limit, $\Sigma \rightarrow 0$, we get: $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = A$. #