Today: (1) $\$ 12$. limsup and liming
(2) review

Recall: - Let $\left(S_{n}\right)$ be any seq of real number

$$
\limsup _{n} S_{n}=\lim _{N \rightarrow \infty}\left(\sup _{n \rightarrow N} S_{n}\right), \quad \liminf S_{n}=\lim _{N \rightarrow \infty}\left(\inf _{n \rightarrow N} S_{n}\right) .
$$

- They only care about the "tail behavior"
- $\forall \varepsilon>0, \quad \exists N>0$, sit.

$$
\left(\limsup S_{n}\right)+\varepsilon>S_{n} \quad \forall n>N
$$

similarly $\left(\liminf S_{u}\right)-\varepsilon<S_{n} \quad \forall n>N$

- Picture:

- In general, $\liminf \left(s_{u}\right) \leqslant \lim \sup \left(s_{u}\right)$. If they are equal. then $\lim s_{u}$ exists.

The: Let S_{n} be a seq, with limit $s>0$.
Let t_{n} be a seq, bounded.
Then $\quad \limsup \left(S_{n} \cdot t_{n}\right)=S=\limsup t_{n}$.

Observation: (1) simple case. $\quad \mathrm{Su}_{\mathrm{u}}$ is a constant seq. then $\quad \limsup \left(s \cdot t_{n}\right)=s \cdot \limsup t_{n}$.
(2) In general, we have "noise" in S_{n}.

$$
S_{n}=S+\left(S_{n}-S\right)
$$

$=$ snoise. will be smaller and smaller. as $n \rightarrow \infty$.
(3) $\quad \beta=$ limsuptu, exists in \mathbb{R}. maybe $t,-$, or 0 .

One simplification is that, by replacing S_{n} with Sh / s. we may assume $\quad S_{n} \rightarrow 1$.

Pf: $W L O G$, assume $S_{n} \rightarrow 1$.
Try to prove one direction first:

$$
\limsup \left(s_{n} \cdot t_{n}\right) \geqslant \quad \limsup t_{n .}=\beta
$$

There exists. a subseq $\left(t_{n_{k}}\right)$, that converge to β. Then, with the some index subset $\left(n_{k}\right)$., we consider $\left(S_{n_{k}}\right)$ subseq in $\left(S_{n}\right)$. Since $\lim S_{n}=1$, hence. $\lim _{k} S_{n_{k}}=1$.

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left(S n_{k} \cdot t_{n_{k}}\right)=\left(\lim _{k} S_{n_{k}}\right)\left(\lim _{k} t_{n_{k}}\right)=1 \cdot \beta=\beta . \\
& \left(S_{n_{k}} \cdot t_{n_{k}}\right)_{k \in \mathbb{N}} \text { is a subseq of }\left(S_{u} t_{n}\right)_{n \in \mathbb{N}}
\end{aligned}
$$

$\because \limsup \left(S_{n} t_{n}\right)$ is the largest among all possible sulisequential limits of $\left(S_{n} t_{n}\right)$., hence.

$$
\lim \sup \left(\operatorname{su} t_{n}\right) \geqslant \beta .
$$

To get the other direction, we consider

$$
\begin{aligned}
& \quad \limsup t_{n}=\limsup \left(\frac{1}{s_{n}} \cdot s_{n} t_{n}\right) . \\
& \because \quad \lim \frac{1}{s_{n}}=\frac{1}{\lim s_{n}}=1 ., \\
& \therefore \quad \limsup t_{n} \geqslant \lim \left(\frac{1}{s_{n}}\right) \cdot \limsup \left(s_{n} t_{n}\right)=\limsup \left(s_{n} t_{n}\right) . \\
& \Rightarrow \quad \limsup t_{n}=\limsup \left(s_{n} t_{n}\right)
\end{aligned}
$$

Sketch of if (\#2): ${ }^{(1)} \because S_{n} \rightarrow 1 . \quad \therefore \quad \forall \varepsilon>0, \quad \exists N>0 . \quad \forall n>N$.
$1-\varepsilon<S_{n}<1+\varepsilon$.
(2) $\limsup t_{n}=\beta, \forall \varepsilon_{1}>0, \exists N_{1}>0$,
 $t_{n}<\beta+\varepsilon_{1}$.

If $\beta=0$, then $s \cdot l i m s u p t n=S \cdot 0=0$. one only need $\lim \sup \left(S_{n} \cdot t_{n}\right)=0$.

If $\beta \neq 0$, then take $0<\varepsilon_{1}<|\beta| / 2$. So that $\beta+\varepsilon_{1}$ has same sign as β.

Consider the case $\beta \neq 0$ first.
$\sigma \quad \beta>0$. $\quad \because \quad n>\max \left(N, N_{1}\right)$.

$$
\begin{aligned}
& S_{n}<1+\varepsilon . \\
& t_{n}<\beta+\varepsilon_{1} . \\
\Rightarrow \quad & S_{n} \cdot t_{n}<(1+\varepsilon)\left(\beta+\varepsilon_{1}\right) \quad \forall n>\max \left(N, N_{1}\right) .
\end{aligned}
$$

$$
\Rightarrow \quad \limsup \left(\sin _{n}\right)<(1+\varepsilon)\left(\beta+\varepsilon_{1}\right) .
$$

since this is true $\forall \varepsilon, \varepsilon_{1},\left|\varepsilon_{1}\right|<|\beta| / 2$.

$$
\begin{aligned}
& \Rightarrow \quad \limsup \left(s_{u} t_{n}\right) \leq \beta . \\
& \text { - } \beta<0 \text {. then. } \frac{\forall|\varepsilon|<1 / 2,\left|\varepsilon_{1}\right|<|\beta| / 2 \text {, positive. }}{s_{n}>1-\varepsilon>0 \text {. }} \\
& t_{n}<\beta+\varepsilon_{1}<0 \\
& \Rightarrow \quad S_{n} \cdot t_{n}<\left(\beta+\varepsilon_{1}\right)(1-\varepsilon)<0 \quad \forall n>\max \left(N_{1} \mu_{1}\right) \text {. } \\
& \Rightarrow \quad \limsup \left(\operatorname{sut}_{n}\right) \leqslant \beta \cdot 1 \\
& \text { - } \beta=0 \text {. } \\
& S_{n}<1+\varepsilon \text {. } \\
& \forall n \text { large. } \\
& t_{n}<\varepsilon_{1} \\
& \Rightarrow \quad s_{n} \cdot t_{n}<(1+\varepsilon) \varepsilon_{1} \text {. } \\
& \Rightarrow \quad \limsup s_{u} t_{n}<(1+\varepsilon) \varepsilon_{1} \quad \forall \varepsilon, \varepsilon_{1}>0 \text {. } \\
& \Rightarrow \quad \lim \sup \text { situ }_{n} \leq 0 \text {. } \\
& \forall n \text { large. } \\
& \text { small. }
\end{aligned}
$$

To get lower bound, one use the same method as \#1.

Thu 12.2: Let $\left(S_{n}\right)$ be a sequeme of positive numbers.
Then we have.

$$
\liminf \left(\frac{s_{n+1}}{s_{n}}\right) \leqslant \liminf \left(s_{n}\right)^{\frac{1}{n}} \leqslant \limsup \left(s_{n}\right)^{1 / n} \leqslant \limsup \left(\frac{s_{n+1}}{s_{n}}\right)
$$

Observation: (1) consider the case, $S_{n}=q^{n} \quad(q>0)$. then $\quad\left(S_{n}\right)^{\frac{1}{n}}=q$. $\quad S_{n+1} / S_{n}=q$.
(2). if $S_{n}=q^{n} \cdot A, A>0$. then

$$
\begin{aligned}
& s_{n+1} / s_{n}=q_{1} \\
& \left(s_{n}\right)^{\frac{1}{n}}=\left(A^{\frac{1}{n}}\right) \cdot q
\end{aligned}
$$

we have $\quad \lim _{n \rightarrow \infty} \overline{A^{\frac{1}{n}}}=A^{0}=1$. (see 87 . or $\S 9$ results).

$$
\lim \left(s_{n}\right)^{\frac{1}{n}}=q
$$

(3) if $S_{n}= \begin{cases}2 & \text { if } n \text { even } \\ 1 & \text { if } n \text { odd. }\end{cases}$
then $\quad S_{n+1} / S_{n}= \begin{cases}2 / 1 & n \text { odd } \\ \text { or } 1 / 2 . & n \text { even. }\end{cases}$
Thus. $\quad \limsup \left(s_{n+1} / s_{n}\right)=2 \quad V$

$$
\liminf \left(s_{a+1} / s_{n}\right)=1 / 2
$$

How about $\left(S_{n}\right)^{\frac{1}{n}} ? \quad \because \quad 1^{\frac{1}{n}} \leqslant\left(S_{n}\right)^{\frac{1}{n}} \leqslant 2^{\frac{1}{n}}$ and $\lim 2^{\frac{1}{n}}=1 . \quad \lim 1^{\frac{1}{n}}=1 . \quad \therefore \quad \lim \left(S_{n}\right)^{\frac{1}{n}}=1$.

To prove (8)
Pf: Let $L=\limsup \left(S_{n+1} / S_{n}\right)$. If $L=+\infty$, then there is nothing parve
$\because \quad S_{n+1} / S_{n}>0 \quad \therefore L \geqslant 0$. Hence, we only need consider $L \in \mathbb{R}$.
To prove $\quad \limsup \left(S_{n}\right)^{\frac{1}{n}} \leqslant \limsup \left(S_{n+1} / S_{n}\right)$,
only weed to prove

$$
\begin{aligned}
& \forall \varepsilon>0, \quad \exists \frac{\lim \sup \left(S_{n}\right)^{\frac{1}{n}} \leqslant L+\varepsilon . \quad \forall \varepsilon>0,}{\exists N>0,} \text { sat. } \forall n \geqslant N, \quad\left(S_{n+1} / S_{n}\right)<L+\varepsilon . \\
& \Rightarrow \quad \frac{S_{N+1}}{S_{N}}<L+\varepsilon, \quad \frac{S_{N+2}}{S_{N+1}}<L+\varepsilon, \cdots \\
& \Rightarrow \quad S_{N+k}<S_{N} \cdot(L+\varepsilon)^{k}=\frac{S_{N}}{(L+\varepsilon)^{N}}(L+\varepsilon)^{N+k}
\end{aligned}
$$

Thus $\left(S_{N+k}\right)^{\frac{N+k}{}}<\left[\frac{S_{N}}{(L+\varepsilon)^{N}}\right]^{\overline{N+k}} \cdot(L+\varepsilon) \quad \forall k>0$

$$
\begin{aligned}
\Rightarrow \quad \limsup _{k \rightarrow \infty}\left(S_{N+k}\right)^{\frac{1}{N+k}} \leqslant \lim _{k} \sup \left(\frac{S_{N}}{(L+\varepsilon)^{N}}\right)^{\frac{1}{N+k}} \cdot(L+\varepsilon) . \\
\Rightarrow \quad \limsup _{n \rightarrow \infty}\left(S_{n}\right)^{\frac{1}{n}} \leqslant\left[\lim _{k \rightarrow \infty .}\left(\frac{S_{N}}{(L+\varepsilon)^{N}}\right)^{\frac{1}{N+k}}\right] \cdot(L+\varepsilon) \\
=1 \cdot(L+\varepsilon) .
\end{aligned}
$$

This proves (*), hence inequality (3).

Review: (1) real number. $N, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
Completeness Axiom: if $S \subset \mathbb{R}$ is bounded, then $\sup (s)$ exists in \mathbb{R}.

- differeme between. $\max (5)$. $\sup (S)$?

they may not exist, if they do exists. they need to be inside S.
(2) sequence and limit.
- $E-N$ language
- pictorial presentation
- algebraic operation to limits.
 if s_{n}, t_{n} converge to $s_{1} t$,

$$
\lim \left(s_{n}+t_{n}\right)=\lim s_{n}+\lim t_{n}, \cdots \text { et z. }
$$

- example limits. . if $a>0, \lim _{n \rightarrow \infty} a^{\frac{1}{a}}=1$.
- $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0^{n \rightarrow \infty}$ if $P>0$.
- Comparison between limits:
if $s_{n} \leqslant t_{n}$, and $l_{\text {mim }} s_{n}$., lime exists in \mathbb{R}., then $\quad \lim s_{n} \leqslant \lim t_{n}$.
- Squeeze Lemma. given $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$. if $\quad a_{n} \leqslant b_{n} \leqslant c_{n} . \quad \forall n$, and $\lim a_{n}=\lim c_{n}$. then $\lim b_{n}$ exists.
- Monotone Sequence + Boundness \Rightarrow Convergence. Cauchy $\quad \Leftrightarrow$ comergence.
- If $\left(S_{n}\right)$ does not converge, we try to extra subseq that converges.
- $\quad t$ is a subseq limit, $\Rightarrow \quad \forall \varepsilon>0, \quad\left\{n| | s_{n}-t \mid<\varepsilon\right\}$. (know the proof of construction is an infinite set. of subseq).

