Today: - $\$ 12$. liming. limsup.

- review for midterm
next The: §13. metric space and topology.

$$
\begin{aligned}
\limsup \left(S_{n}\right) & =\lim _{N \rightarrow \infty}\left(\sup _{n \geq N}\left(S_{n}\right)\right) \\
\liminf \left(S_{n}\right) & =\lim _{N \rightarrow \infty}\left(\inf _{n \geq N}\left(S_{n}\right)\right) .
\end{aligned}
$$

Ex:

- $\quad \liminf \left(S_{n}\right) \leqslant \limsup \left(S_{n}\right)$.

Pf: $\quad \sup _{n \rightarrow N}\left(S_{n}\right) \geqslant \inf _{n>N}\left(S_{n}\right)$., then take limit $N \rightarrow \infty$.

- If $\left(S_{n_{k}}\right)$ is a subseq, then.

$$
\lim \sup \left(S_{n_{k}}\right) \leqslant \lim \sup \left(S_{n}\right) .
$$

Pf: $\quad \lim \sup \left(S_{n}\right)=\lim _{N \rightarrow \infty} A_{N} \quad A_{N}=\sup _{n>N}\left(S_{n}\right)$.

$$
\begin{aligned}
& =\lim _{k \rightarrow \infty} A_{n_{k}} \\
\lim _{k} \sup \left(S n_{k}\right) & =\lim _{k \rightarrow \infty} A_{N_{k}}^{\prime} \quad A_{N_{k}}^{\prime}=\sup _{l>k}\left(S_{n_{l}}\right)
\end{aligned}
$$

since the set $\left\{n_{l} \mid l>k\right\} \subset\left\{n \mid n>n_{k}\right\}$ hence, $\quad \sup \left\{S_{n_{l}} \mid l>k\right\} \leqslant \sup \left(\operatorname{Sn}_{n} \mid n>n_{k}\right)$.

$$
\Rightarrow \quad A_{n_{k}}^{\prime} \quad \leqslant \quad A_{n_{k}}
$$

$$
\Rightarrow \quad \lim _{k} \lim _{k}^{\prime \prime} A_{n_{k}}^{\prime} \quad \leq S_{k}\left(S_{n_{k}}\right) \quad A_{n_{k}}=\limsup \left(S_{n}\right) .
$$

- If $\limsup \left(s_{u}\right)=\liminf \left(s_{n}\right)$, then $\lim s_{n}$ exists.

The 12.1. Let S_{n} be a sequeme. st. $\lim S_{n}=s>0$.

- Let t_{n} be a bound sequence, $\beta=\lim \sup t_{n}$. Then. $\quad \lim \sup \left(\delta_{n} \cdot t_{n}\right)=s \cdot \limsup \left(t_{n}\right)$.

Observation: (1) recall: if $\underline{t_{n}}$ also converge, say to β. then $\quad \lim \left(s_{n} \cdot t_{n}\right)=\lim \left(s_{n}\right) \cdot \lim \left(t_{n}\right)=s \cdot \beta$.
(2) What are the possible sequential limits of $\left(S_{n}-t_{n}\right)$?

- One way to produce convergent subseq of $\left(S_{n} \cdot t_{n}\right)$ is that, pick a convergent subseq $\left(t_{n_{k}}\right)$ in t_{n}, then $\left(S_{n_{k}} \cdot t_{n_{k}}\right)_{k}$ is convergent.
- Q: if $\left(s_{n_{k}} \cdot t_{n_{k}}\right)$ converge, does that mean $\left(t_{n_{k}}\right)$ converge?

Tif $\lim a_{n}$ exist, $\sqrt{\frac{b_{n} \neq 0}{l i m} b_{n} \neq 0}$, then $\lim \left(\frac{a_{n}}{b_{n}}\right)$ exist,

$$
=\frac{\lim \left(a_{n}\right)}{\lim \left(b_{n}\right)}
$$

$$
\begin{gathered}
\text { Subseq Lime of }{ }_{A}^{" 1}\left(S_{n} \cdot t_{n}\right)=s \cdot \operatorname{subseq} \lim _{B}^{\prime \prime}\left(t_{n}\right) . \\
A=s \cdot B .
\end{gathered}
$$

Then $\quad \sup (A)=S \cdot \sup (B)$

$$
\Rightarrow \quad \limsup \left(s_{n} \cdot t_{n}\right)=s \cdot \limsup \left(t_{n}\right) .
$$

Pf \#2: (using epsilon of room trick).

- To prove $\limsup \left(s_{n} \cdot t_{n}\right) \leqslant s \cdot \lim \sup \left(t_{n}\right)$. we just need to prove

$$
\lim \sup \left(s_{n} \cdot t_{n}\right) \leq s \cdot \lim \sup \left(t_{n}\right)+\varepsilon . \quad \forall \varepsilon>0 .
$$

- Let $\beta=\lim \sup \left(t_{n}\right) . \forall \varepsilon>0, \quad \exists N>0$. sit.

$$
t_{n}<\beta+\varepsilon \quad \forall n>N .
$$

- (a)

sit. $\left|S_{n}-S\right|<\underbrace{S \cdot \varepsilon_{1}}_{1} \quad \forall n>N_{1}$.

$$
1-\varepsilon_{1}<\left(s_{n} / s\right)<1+\varepsilon_{1} \nLeftarrow s \varepsilon_{1}<s_{n}-s<s \cdot \varepsilon_{1}
$$

$0<a<b$
$\forall n>N_{1}$

$$
\underline{S_{n}} \cdot t_{n}<S\left(1+\varepsilon_{1}\right) \cdot(\beta+\varepsilon) .
$$

$$
\Rightarrow \begin{aligned}
& \quad \begin{array}{c}
c<0 d \\
a \cdot c<b d
\end{array} \\
& \hline a \cdot d
\end{aligned}
$$

- $\beta=0, \beta<0$ for exercise.

Together, they prove one direction

$$
\begin{equation*}
\limsup \left(S_{n} \cdot t_{n}\right) \leqslant S \cdot \limsup \left(t_{n}\right) \tag{1}
\end{equation*}
$$

To get the other direction, we do.

$$
\begin{aligned}
\limsup \left(t_{n}\right)_{b y C D} & =\limsup \left(\frac{1}{s_{n}} \cdot \underline{s_{n} t_{n}}\right) \\
& \leqslant \lim \left(\frac{1}{s_{n}}\right) \cdot \limsup \left(\sin t_{n}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \lim \sup .\left(s_{n} t_{n}\right)<S\left(1+\varepsilon_{1}\right) \cdot(\beta+\varepsilon) . \quad \forall \varepsilon_{\varepsilon_{1}>0 .} . \\
& \Rightarrow \quad \limsup ^{\Rightarrow}\left(s_{n} \cdot t_{n}\right) \leqslant S \cdot \beta . \quad \quad\left(\text { taking limit of } \begin{array}{l}
\varepsilon \rightarrow 0, \varepsilon_{n \rightarrow 0}
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
& =\frac{1}{s} \cdot \limsup \left(s_{n} t_{n}\right) \\
\Rightarrow \quad & s \cdot \lim \sup \left(t_{n}\right) & \leqslant \lim \sup \left(s_{n} t_{n}\right) \tag{2}\\
(1+(2) \Rightarrow \quad & s \cdot \limsup t_{n} & =\limsup \left(s_{n} \cdot t_{n}\right) .
\end{array}
$$

Thm 12.2 Let S_{n} be a sequence of positive numbers. Then

$$
\begin{aligned}
\liminf \left(\frac{S_{n+1}}{S_{n}}\right) & \leqslant \liminf _{2}\left(S_{n}\right)^{\frac{1}{n}} \leqslant \lim \cdot \sup \left(S_{n}\right)^{\frac{1}{n}} \leqslant \limsup \left(\frac{S_{n+1}}{S_{n}}\right) .
\end{aligned}
$$

Observation: - $\frac{S_{n+1}}{S_{n}}$. sequence of ratio., it measure changes of nearby elements.

- $\left(S_{n}\right)^{\frac{1}{n}_{n}^{t}}$. Recall, if $a>0$, then. 1

$$
\lim _{n \rightarrow \infty}(a)^{\frac{1}{n}}=1
$$

- Hence, if $0<a<S_{n}<b$, then.

$$
\begin{aligned}
& \qquad a^{\frac{1}{n}}<\left(S_{n}\right)^{\frac{1}{n}}<b^{\frac{1}{n}} \\
& \Rightarrow \quad 1=\lim \left(a^{\frac{1}{n}}\right) \leqslant{\limsup \left(S_{n}\right)^{\frac{1}{n}}}_{\liminf \left(s_{n}\right)^{\frac{1}{n} .}} \leqslant \lim b^{\frac{1}{n}}=1 \\
& \text { if } 0<a<\operatorname{sn}<b, \theta_{n} \\
& \Rightarrow \quad \underline{\lim \left(S_{n}\right)^{\frac{1}{n}} \text { exist }, \text { and }=1 .}
\end{aligned}
$$

best case.

$$
\begin{array}{rrr}
\left(S_{n}\right)^{\frac{1}{n}}=q, & \frac{S_{n+1}}{S_{n}}=q . & (q>0) . \\
\Rightarrow S_{n}=q^{n} . & \left(S_{n}\right)=1, q, q^{2}, \cdots
\end{array}
$$

- slight variation of the best case:

$$
S_{n}=a \cdot q^{n} .
$$

$$
a>0, \quad q>0 .
$$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
\frac{S_{n+1}}{S_{n}}=\frac{a \cdot q^{n+1}}{a \cdot q^{n}}=q . \\
\left(S_{n}\right)^{\frac{1}{n}}=a^{\frac{1}{n}} \cdot q
\end{array} \text { but } a^{\frac{1}{n}} \rightarrow 1 .\right.
\end{aligned}
$$

(tor sase) $S_{n}= \begin{cases}2 & n \text { is even } \\ 1 & n \text { is odd. }\end{cases}$
then.

$$
\begin{aligned}
& \left(S_{n}\right)=1,2,1,2,1,2, \\
& \left(S_{n+1}^{S_{n}}\right)=2, \frac{1}{2}, 2, \frac{1}{2}, \ldots
\end{aligned}
$$

$$
\left(S_{n}\right)^{\frac{1}{n}}=1,2^{\frac{1}{2}}, 1,2^{\frac{1}{4}}, \cdots \cdots, \lim \left(S_{n}\right)^{\frac{1}{n}}=1
$$

So, $\quad \limsup \left(\frac{s_{n+1}}{s_{n}}\right)=2$ (\because, S_{n} is bounded)

$$
\liminf \left(s_{n+1} / s_{n}\right)=1 / 2 .
$$

the claims:

$$
\lim \left(s_{n}\right)^{\frac{1}{n}}=1
$$

$$
\frac{1}{2} \leqslant 1 \leqslant 1 \leqslant 2 \quad \underline{ }
$$

Pf: Proof for (3),

$$
\limsup \left(S_{n}\right)^{\frac{1}{n}} \leqslant \limsup \left(\frac{S_{n+1}}{S_{n}}\right) \text {. }
$$

If $\limsup \left(\frac{S_{n+1}}{S_{n}}\right)=+\infty$, then there is nothing to prove. Since S_{n+1} / S_{n} are positive, hence. $\limsup \left(S_{n+1} / S_{n}\right)$ cannot be $-\infty$.
Hence, we only reed to consider the case, that

$$
L=\limsup \left(\frac{S_{n+1}}{S_{n}}\right) \quad \in \mathbb{R} .
$$

(in particular, we know $L \geqslant 0$).

Quiz: if S_{n} is a bounded positive seq. is it true that $\frac{S_{n+1}}{S_{n}}$ is a bounded seq? (Ans: No).
$($ if $\quad 0 a<1, \quad 0<b<1$, do at hae upper then for $\%$? take $a=1 / 2, b=\frac{1}{n}$, then $a / b=\frac{n}{2}$.

- if S_{n} is monotone., then S_{n+1} / S_{n} can not be getting niger

Pf: $\quad S_{n}$ bounded and montoref $\Rightarrow \quad S_{n} \rightarrow S>0$

$$
\Rightarrow \quad \lim \frac{S_{n+1}}{S_{n}}=\frac{\lim S_{n+1}}{\lim S_{n}}=\frac{S}{S}=1
$$

- How to get S_{n} bounded, but Sur/ Sa unbounded?

$$
\begin{aligned}
& {\left[\begin{array}{l}
\ldots \\
\ldots \\
\ldots
\end{array}\right.} \\
& S_{n}= \begin{cases}1 & n \text { even } \\
1 / n & n \text { odd } .\end{cases}
\end{aligned}
$$

Quiz: if S_{n} is positive and bounded, is it passible that? $S_{n+1} / S_{n} \rightarrow 0$?
Aus: Yes.

$$
S_{n}=\frac{1}{n!}, \quad S_{n+1} / S_{n}=\frac{1}{n+1} .
$$

To prove limsup $\left(S_{n}\right)^{\frac{1}{n}} \leq L$., only need to show, $\forall \varepsilon>0$,

$$
\begin{equation*}
\limsup \left(S_{n}\right)^{\frac{1}{n}} \leqslant L+\varepsilon \tag{*}
\end{equation*}
$$

For this ε, we can chore $N>0$, integer. s.t.

$$
\begin{aligned}
& \forall n>N, \quad\left(\frac{S_{n+1}}{S_{n}}\right) \leqslant L+\varepsilon \\
& \Rightarrow \quad \frac{S_{N+1}}{S_{N}} \leqslant L+\varepsilon, \quad \frac{S_{N+2}}{S_{N+1}} \leqslant L+\varepsilon, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{S_{N+k}}{S_{N}} \leqslant(L+\varepsilon)^{k .} \\
& \Rightarrow \quad S_{w+k} \leqslant S_{w} \cdot(L+\varepsilon)^{k} \\
& \Rightarrow \quad \forall n \geqslant N, \quad S_{n}^{\frac{1}{n}} \leqslant\left[S_{N} \cdot(L+\varepsilon)^{n-N}\right]^{\frac{1}{n}} . \\
& =\left(\frac{S_{N}}{(L+\varepsilon)^{M}}\right)^{\frac{1}{n}} \cdot(L+\varepsilon) \text {. } \\
& \Rightarrow \quad \limsup \left(S_{n}\right)^{\frac{1}{n}} \leqslant \limsup \left(\frac{S_{N}}{(L+\varepsilon)^{n}}\right)^{\frac{1}{n}} \cdot(L+\varepsilon) \\
& =(L+\varepsilon) \cdot \limsup _{n \rightarrow \infty}\left(\frac{S_{N}}{(L+\varepsilon)^{N}}\right)^{\frac{1}{n}} \\
& =(L+\varepsilon) \text {. }
\end{aligned}
$$

Hence (*) is true, $\forall \varepsilon>0$. Thus (3) holds.

