
 

today 813 metric space and topology

A metric space is a set S together with a

distance function d Sx S IR suchthat
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To verify triangle inequality for dmax
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Exe Let 5 be the unit circle in IR
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Cauchysequeme in a metric space Ssd n

It A sequence Csn n in S is Cauchy if He 0

there exists a N o s t Hmm N
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Convergency We say a seq Su n in 5 d
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Completeness A metric space Sd is co e

if every Cauchy seq is convergent

IN disamfunim if Sid is a metric space

and ACS is any subset then Aid is a metric
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exist a Cauchy seq in S but doesnot converge to

an point s E Q

let Csn be a seq of rational number convergent to an irrational

number LEIR then Csn is a Cauchy seq in S but Sn doesn't

converge to any rational number
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Sid is not complete since the diz seq F n

is Cauchy but not convergent in S C o k S
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Sketch of proof
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Then Sm m is a Cauchy seq in IR
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Cauchy seq in R

2 Smm converges to S E R

V lei en sin m converges to S
in R F



recall theBWthm every bound seq has convergent subseq

The Bolzano Weierstrass for 112

Every b qme Smm EIR has a convergent

subseq

Pf To construct a subseq convergent in IR

to get a subseg whose i th coord

converges V i e i En

We can construct this subseq step by step
steps take swbseg of Sm sit sink

Converges Then replace Sm by this subseq
theney

steps take subseg of Sm sit sink

Converges Then replace Sm by this subseq

Steph

Then we get a subseg such that Sin m converges
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topology

Def Let 5 be a set A topological structure on S

is the data of a collections of subsets in S
If UES and U is in T we say U is open
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S and Yo are open subset

arbitrary unions of open subsets
is still open

finite intersections of open sets are

open
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PEA is called an interior point if 7 E 0

such Beep 91 de9 p s e GES is contained in A

ACS is open if every point in A ins is

an interior point


