

Pf: Let $S_N = \sup_{n \to \infty} a_n$. Since $S_n \to \alpha_+$ as $n \to \infty$,
then 7270, 3N,0, S.t. HAZN, Q+-E. < Sn < Q++ E.
Since Sn > am, for all m>n., we have.
$a_m < \alpha_+ + \epsilon$ $f_{m_2n_1}$, n_2N
(3) 0 (1 1 5 H 11
Ex: an=Sn
$\frac{Ex:}{N} \qquad \frac{An=Sn}{N} \qquad \frac{Q+E}{N}$
Ihm: Let (an) be a bounded seq. Then
' lim an exists \ lim sup an = lim inf an
d = lim an
Pf: > we show limsup an = lim an. Suffice to show that
7270, limsup an - lim an. 22.
<u></u>
actually, if $S_n = \sup_{m \ni n} a_m$, then $S_n \ni a_n$. Then.
lim Sn > lim an. by 9.9 (c). Hence limsup an z lim an.
₩ 570, JN70, s.t. Hn>N, an-α <ε,
SN< X+E. = YM3N Sm< x+E. => I'm Sn < x+E.
i.c. Im an \le lim Sw \le lim an + \xeta
Since this holds for any \$70, this im SN = lim an.
let d = lim sup an = lim infan.
€ Y 2 >0, 3 N 170, s.t. Yn7 N1,
$a_n < \lim sup a_n + \epsilon = \alpha + \epsilon$
V J Nz 70, s.t. Hn 7 Nz.

$Q-E. = \lim_{n \to \infty} \int_{\Omega_n} -E. < Q_n$
Cet N= max (N1, N2). Then & n>N,
d- ε. < an < d+ ε #.
Now, proof that (an) converges (an) is a
Cauchy seq.
recall: (aw) is a Cauchy seq, if 4 = >0, 3N >0. sit.
$\forall n, m > N$. $ a_n - a_m < \epsilon$.
Pf: We are going to show that limsup an = lim infan.
Suffre to show, H = >0, lim sup an - lim in fn an < 2 \(2 \).
By Cauchy property of (an), $\exists N>0$, 5+. $\forall n,m \not\ni N$, $ a_n-a_m < \varepsilon$. Fix $n=n_0 \not\ni N$, then. $\forall m \not\ni n_0$
anote Anote Anote
$\Rightarrow \limsup_{n_0 \to \infty} a_n < a_{n_0} + \varepsilon$ $a_{n_0} - \varepsilon < \liminf_{n \to \infty} a_n$ N
⇒ glim sup an < lim inf an + 2€. (±).
since also. lim sup an = lim infan, and (x) is
true for all 270. = lim sup an = liminfan.
⇒ lim an exists.
n of them,
Ex: Let $X = 0.999 - 9;;$ Let $An = 0.99 - 9$,
then an is a monotone sequence, and it is bounded,

i.e. an < 1 4n. = an has a limit. And $\lim a_n = 1 \qquad : \qquad 1 - a_n = \frac{1}{10^n}, \qquad (hence \ \forall \ \ge 70, \ if \ we$ (et N= log E/log 10, then Yn>N, [1-an] < E.). hence. 0.99 --- = 1. (2). Let (Su) be a seq. s.t. $|S_{n+1}-S_n|<2^{-n}$ for all $n\in\mathbb{N}$. => | Sn - Sn+k | \leq | Su - Sn+1 | + | Sn+1 - Sn+2 | + \cdots + \cdots + \cdots - \cdots + \cdots - \cdots - \cdots + \cdots - \ $\begin{cases} 2^{-n} + 2^{-n-1} + \cdots + 2^{(n+k-1)} \end{cases}$ $= 2^{-n} \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots + 2^{-(k-1)} \right)$ $\leq 2^{-n} \cdot 2$ ⇒ (Sn) is a (audry sequence. indled, \$270, 32-N<5. SO \$n7N. Au-an1<2-N.