Today: (1) common mistakes. in HW1
\#4. $\sqrt{2+\sqrt{2}}$ is not a rational number we reduce to show that $\sqrt{2+\sqrt{2}}$ is not an integer. If it were an integer. then its a solution to $\quad x^{2}=2+\sqrt{2} \quad \Leftrightarrow\left(x^{2}-2\right)^{2}=2$.,

$$
x^{4}-4 x^{2}+2=0 \quad x \text { can only be } \pm 1, \pm 2 .
$$

Just plug in $x= \pm 1, \pm 2$ into the equation, and show they are not sol'n. Hence $\sqrt{2+\sqrt{2}}$ is not an integer.
(2) Recursive sequence, i.e. S_{n+1} is determined by S_{n}. (and possibly. n as well)
(P58 of Rose).
Ex: $\quad S_{1}=5, \quad S_{n+1}=\frac{S_{n}^{2}+5}{2 \cdot S_{n}}$
Q: $\quad\left(S_{u}\right)$ converges ?
If so, converge to what ?
Strategy: (1) prove that S_{n} is a monotone descreasing sequence, and show that S_{n} is bounded below
we will show that

$$
\begin{array}{ll}
A_{n}: S_{n} \leqslant S_{n-1} . \\
B_{n}: \quad \sqrt{5} \leqslant S_{n}
\end{array} \quad(n \geqslant 2)
$$

- Suppose A_{n}, B_{n} holds, we are going to show A_{n+1}, B_{n+1} hold.
$A_{n+1} \quad \Leftrightarrow \quad S_{n} \geqslant S_{n+1}$

$$
\Leftrightarrow \quad S_{n} \geqslant \frac{s_{n}^{2}+5}{2 s_{n}}
$$

by B_{n}, we know $S_{n}>\sqrt{5}>0$, hence we can multiply the above ineq by $2 S u$, a positive number, and get

$$
\begin{array}{lr}
\Leftrightarrow & 2 S_{n}^{2} \geqslant S_{n}^{2}+5 \\
\Leftrightarrow & S_{n}^{2} \geqslant 5 \\
\Leftrightarrow & S_{n} \geqslant \sqrt{5}
\end{array}
$$

this is provided by B_{n}, Hence. An+1 holds.

Next, we show B_{n+1} holds.

$$
\begin{aligned}
B_{n+1} & \Leftrightarrow \quad S_{n+1} \geqslant \sqrt{5} \\
& \Leftrightarrow \quad \frac{S_{n}^{2}+5}{2 S_{n}} \geqslant \sqrt{5} \\
& \Leftrightarrow \quad S_{n}^{2}+5 \geqslant \sqrt{5} \cdot 2 S_{n} \\
& \Leftrightarrow \quad S_{n}^{2}-2 \cdot \sqrt{5} \cdot S_{n}+5 \geqslant 0 \\
& \Leftrightarrow \quad\left(S_{n}-\sqrt{5}\right)^{2} \geqslant 0
\end{aligned}
$$

this holds automatically.

- To check. statement holds for $n=2$, we compute

$$
S_{2}=\frac{s_{1}^{2}+5}{2 \cdot s_{1}}=\frac{5^{2}+5}{2 \cdot 5}=\frac{30}{10}=3
$$

indeed $\quad\left\{\begin{array}{ll}A_{2}: \quad & S_{1} \geqslant S_{2} \\ B_{2}: \quad 3 \geqslant \sqrt{5}\end{array} \quad(\because 9 \geqslant 5)\right.$
they holds for $n=2$.
(2) what is the limit? let $\alpha=\lim _{u \rightarrow} S_{4}$, then. α satisfies

$$
\begin{equation*}
\alpha=\frac{\alpha^{2}+5}{2 \cdot \alpha} \tag{*}
\end{equation*}
$$

Indeed, by taking limit on both sides of

$$
S_{n+1}=\frac{S_{n}^{2}+5}{2 S_{n}}
$$

possible value
we get $(*)$. (*) $\Rightarrow \alpha^{2}=5 \Rightarrow \alpha=\sqrt{5}$ or

$$
\alpha=-\sqrt{5} .
$$

- since $\quad S_{4} \geqslant \sqrt{5}, \quad \therefore \quad \alpha=\sqrt{5}$.

General Method (to visualize and analyse recursive seq).

- to create this trajectory, we do horizontal to the diagonal, govertoal to the graph"
$\$ 11$
sub sequence.
Definition: Let $\left(S_{\underline{\underline{S}}}\right)_{n \in N}$ be a sequence of rel number. Given a strictly increasing seq of indices

$$
n_{1}<n_{2}<n_{3}<\cdots<n_{\underline{m}}<\cdots
$$

We define the corresponding sub sequence as.

$$
t_{k}:=S_{n_{k}}
$$

$\left(t_{k}\right)_{k}$ is called a subs sea of $\left(S_{n}\right)_{n}$.

Sometimes, we write $\left(S n_{k}\right)_{k}$. for the subseq.

Ex:

$$
S_{n}=(-1)^{n} \cdot\left(\frac{1}{n}\right) . \quad\left(S_{n}\right)=\left(-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \frac{1}{6}, \cdots\right.
$$

if we take

$$
\left(n_{1}, n_{2}, \cdots\right)=(2,4,6, \cdots,) \quad n_{k}=2 k .
$$

then.

$$
\begin{aligned}
\text { then. } \quad t_{k} & =S_{n_{k}}=S_{2 k}=(-1)^{2 k} \cdot\left(\frac{1}{2 k}\right)=\frac{1}{2 k} . \\
\left(t_{1}, t_{2}, \cdots\right) & =\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \cdots\right)
\end{aligned}
$$

with limit in \mathbb{R}
Lemma 1: if $\left(S_{n}\right)$ is convergent, then any subsequeme converges to the same point.

Pf: Let $\alpha=\lim _{n} S_{n}$. Let $\left(S_{n_{k}}\right)$ be a subsequence. $\forall \varepsilon>0$, we need to find a $K>0$, s.6. if $k>K$, then $\left|S_{n_{k}}-\alpha\right| \propto \varepsilon$. Since $S_{n} \rightarrow \alpha$, we have an N, sit. $\forall n>N, \quad\left|S_{n}-\alpha\right|<\varepsilon$. So, we may take K to be a large enough integer. sit. $n_{K}>N$., then $\forall k>K, \quad n_{k}>n_{k}>N, \quad$ thus $\left|S_{n_{K}}-\alpha\right|<\varepsilon$. \#.

Lemma 2: If $\alpha=\lim _{n} S_{n}$ exist in \mathbb{R}., then there exists a subsequeme that is monotone.
Pf: Consider 3 subset of indices. $A=\left\{n \in \mathbb{N} \mid S_{n}>\alpha\right\}$

$$
B=\left\{n \in \mathbb{N} \mid \quad S_{n}=\alpha\right\}
$$

$$
C=\left\{n \in \mathbb{N} \mid \quad S_{n}<\alpha\right\} .
$$

since $N=A L B U C \quad(L=$ disjoint union).
at least one of A, B, C. are infinite.
case (a): if B is infinite, then the subseq corresponds to B is enough.
case (b): if A is infinite. We wat to create a decreasing sequence. We do this inductively:
Let $A_{0}=A$. pick $n_{1} \in A_{0}$.
$\left[\begin{array}{l}\text { Define } A_{1}=\left\{n \in A_{0} \mid n>n_{1}, \quad s_{n} \leqslant s_{n_{1}}\right\} . \\ \text { then pick. } n_{2} \in A_{1} .\end{array}\right.$
$\left[\begin{array}{l}\text { Define } A_{2}=\left\{n \in A_{1} \mid n \geq n_{2}, S_{n} \leqslant S_{n_{2}}\right\} \text {. } \\ \text { then pick } n_{3} \in A_{2}\end{array}\right.$
claim: A_{i} are all infinite. (exercise). so the process can go on forever. and we get

$$
n_{1}<n_{2}<n_{3}<\cdots .
$$

and $\quad S_{n_{1}} \geqslant S_{n_{2}} \geqslant S_{n_{3}}$
(all. $S_{n_{k}}>\alpha$).

$$
\|^{\{ }\left\{n: S_{n}<\alpha\right\} .
$$

case (c): if C is infinite. we can build an increasing seq.

Lemma 3: Let $\left(S_{n}\right)$ be any sequare. Then for amy $t \in \mathbb{R}$ (Lu) $\underbrace{\text { has a subseq converges to } t}_{\text {"subconverges to } t "} \Leftrightarrow \forall \varepsilon>0, \underbrace{\left.\text { the int }\left|s_{n}-t\right|<\varepsilon\right\}}_{\text {is infinite. }}$

Pf: \Rightarrow Let $\left(S n_{k}\right)$ converges to t. Then $\forall \varepsilon>0$, $\exists K>0$, sit. $\left|S n_{k}-t\right|<\varepsilon, \forall k>K$. then $\left\{n_{k} \mid k>K\right\}$ is an infinite set., contained in $\left\{n\left|\left|s_{n}-t\right|<\varepsilon\right\}\right.$.
\leftarrow We are going to build n_{k} iteratively.
Let $\varepsilon_{k}=\frac{1}{k}$. for $k=1,2, \cdots$.
Then., let $n_{1} \in\left\{n|\quad| s_{n}-t \mid<\varepsilon_{1}\right\}$.
Assume n_{1}, \cdots, n_{k-1} are constructed, s.t.

$$
n_{1}<n_{2}<\ldots<n_{k-1}, \quad\left|S_{n_{i}}-t\right|<\varepsilon_{\bar{i}}
$$

we can constrict n_{k} as fellows.
pick any. $n_{k} \in\left\{n\left|n>n_{k-1},\left|s_{n}-t\right|<\varepsilon_{k}\right\}\right.$.
By induction, we get a seq $n_{1}<n_{2}<\cdots$.
since $\quad\left|S_{n_{k}}-t\right|<\varepsilon_{k}=\frac{1}{K}$. We have $S_{n_{k}} \rightarrow t \quad \#$ as $k \rightarrow \infty$.
(Sn)
Ex: $=(0,1$,

$$
\begin{array}{ll}
0,0.1,0.2,0.3, \ldots \cdots & 0.9,1, \\
0,0.01,0.02, \ldots .99,1, \\
0,0.001,0.002, \ldots .999,1, \ldots
\end{array}
$$

say $\alpha \in(0,1)$ is $\alpha=0 . a_{1} a_{2} \cdots \cdots \quad a_{i} \in\{0, \cdots, 9\}$. then define $\left(t_{n}\right) S_{n}=0, a_{1} a_{2} \cdots a_{n}$
t_{n} is a subseq of S_{n}.

