Today: (1) HWI
(2). example of recursive seq
(3). \& 11 subsequence.
(1) $\mathrm{HW} \sqrt{2+\sqrt{2}} \notin \mathbb{Q}<\sqrt{2+\sqrt{2}}$ is not $\pm 1, \pm 2$.
$\pm 1, \pm 2$ is not a root of

$$
x^{4}-4 x+2=0
$$

(2). Ex 2 on PS8 of Ross.

- goal is to use monotone boundeness of the seq. to show that its limit exists (in \mathbb{R})

$$
S_{1}=5, \quad S_{n+1}=\frac{S_{n}^{2}+5}{2 S_{n}}
$$

hypothesis: $\begin{cases}A_{n}: & \searrow . \quad \\ S_{n} \leqslant S_{n-1} \\ B_{n}: & S_{n} \geqslant \sqrt{5}\end{cases}$
base case: $\quad(n=2) \quad S_{2}=\frac{S_{1}^{2}+5}{2 \cdot S_{1}}=\frac{5^{2}+5}{2 \cdot 5}=\frac{5^{2}+5}{10}=\frac{30}{10}=3$. indeed $\quad A_{2}: \quad 3 \leqslant 5$

$$
B_{2}: \quad 3 \geqslant \sqrt{5} \quad \Leftrightarrow \quad 9 \geqslant 5
$$

both holds.
induction step: Assume A_{k}, B_{k} holds for $2 \leq k \leq n$ now we show A_{n+1} and B_{n+1}
$A_{n+1} \Leftrightarrow S_{n+1} \leqslant S_{n}$

$$
\Leftrightarrow \quad \frac{2 S_{n}^{2}+S}{2 \cdot S_{n}} \leqslant S_{n}
$$

(given that $S_{n}>0$, by B_{n})

$$
\begin{array}{lrl}
\Leftrightarrow & S_{n}^{2}+5 & \leq 2 \cdot S_{n}^{2} \\
\Leftrightarrow \quad 5 & \leq S_{n}^{2} \quad \text { quracteal by } B_{n} .
\end{array}
$$

$\therefore A_{n+1} \vee$.
B_{n+1}

$$
\begin{array}{ll}
\Leftrightarrow & S_{n+1} \geqslant \sqrt{5} \\
\Leftrightarrow & S_{n}^{2}+5 \geqslant \sqrt{5} \cdot 2 S_{n} . \\
\Leftrightarrow & S_{n}^{2}-2 \cdot \sqrt{5} \cdot S_{n}+5 \geqslant 0 \\
\Leftrightarrow & \left(s_{n}-\sqrt{5}\right)^{2} \geqslant 0 .
\end{array}
$$

automatically V.

Hence A_{n}, B_{n} holds for all $n, \quad\left(S_{n}\right)$ monotone decreasing, bounded below $\Rightarrow \alpha=\lim \operatorname{Sn}$ exists in \mathbb{R}.
(2). What is α ? Since we have equality

$$
S_{n+1}=\frac{S_{n}^{2}+5}{2 \cdot S_{n}}
$$

$$
\begin{aligned}
& \text { taking limit on both sides. } \\
& \lim _{n \rightarrow \infty} S_{n+1}=\lim _{n \rightarrow \infty} \frac{S_{n}^{2}+5}{2 \cdot S_{n}}=\frac{\lim \left(s_{n}^{2}+5\right)}{\lim \left(2 \cdot s_{n}\right)}= \\
& \Rightarrow \quad \alpha=\frac{\alpha^{2}+5}{2 \cdot \alpha} \Rightarrow 2 \alpha^{2}=\alpha^{2}+5 \\
& \Rightarrow \\
& \quad \alpha=5
\end{aligned}
$$

$\Rightarrow \quad \alpha$ can be only $+\sqrt{5}$, or $-\sqrt{5}$.
Since all $S_{n}>0, \alpha$ cannot be a negative number

$$
\Rightarrow \quad \alpha=\sqrt{5} .
$$

General method to find the limits of a recursive seq.

$$
S_{n+1}=f\left(S_{n}\right) .
$$

$$
f(x)=\frac{x^{2}+5}{2 \cdot x}
$$

(1) Draw graph of $y=f(x)$.
and $y=x$.
(2) plot $\left(S_{1}, S_{2}\right)$

$$
\because s_{2}=f\left(s_{1}\right)
$$

$\therefore\left(s_{1}, s_{2}\right)$ is on the graph

$$
y=f(x)
$$

(3) the zigzag trajectory will lead you to the limiting point, which
is the intersection of $y=x$ and $y=f(x)$
\Rightarrow solve for $x=f(x)$

Ex (1) try $S_{n+1}=1+\frac{1}{2} S_{n}$.

$$
f(x)=1+\frac{1}{2} x
$$

claim: for any $S_{1}, \quad \lim S_{n}=\alpha$., where

$$
\alpha=1+\frac{1}{2} \alpha \Rightarrow \alpha=2 .
$$

(2) try $S_{n+1}=1+2 S_{n}$.
$\left(S_{n}\right)$ does not converge, (unless $S_{n+1}=S_{n}=\alpha$, where $\alpha=1+2 \alpha \Rightarrow \alpha=-1$.).

Def: Let $\left(s_{u}\right)$ be a seq, let $\left(n_{k}\right)$ be a strictly increasing

$$
n_{1}<n_{2}<n_{3}<\cdots
$$

then we define a new seq.

$$
t_{k}:=S_{n_{k}} \quad \text { for } k=1,2, \ldots
$$

$\left(t_{k}\right)$ is called a subseq corresponding to $\left(n_{k}\right)$, or $\left(S_{n_{k}}\right)_{k}$

- sometimes, given an infinite subset $A \subset \mathbb{N}$., we can enurnerate elements in A, as

$$
n_{1}<n_{2}<n_{3}<\cdots
$$

then we get a subseq of $\left(S_{n}\right)$, denoted as $\left(S_{n}\right)_{n \in A}$.

Countable set:
N

hence $\mathbb{N} \times \mathbb{N}$ is countable. can be "cornuted".

- is $\mathbb{N} \times N \times N$ countable? Yes.

Pf: Since \mathbb{N} and \mathbb{N}^{2} are countable, hence the product is countable.

- Lemma: (1) if sets A and B are countable, then

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

is countable
(2) if A is countable., and $A^{\prime} \subset A$, then A^{\prime} is countable

- Ex: $\left(S_{n}\right)=0,1,0, \frac{1}{2}, 1,0, \frac{1}{3}, \frac{2}{3}, 1,0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1, \cdots$ it doesn't converge. But, we can take a subsequeme that converge to t.

$$
=\frac{\sqrt{2}}{2}=\frac{1.414 \cdots}{2}=0.707 \cdots
$$

one can get a $\left(t_{t_{n}}\right)=(0,0.7,0.70,0.707, \cdots)$ then one can "embed" $\left(t_{n}\right)$ into (S_{n}), by writing.

$$
0.7=\frac{7}{10}, \quad 0.70=\frac{70}{100},
$$

then $\left(t_{n}\right)$ is a subsequeme of $\left(S_{n}\right)$.

Thu: Let $\left(S_{n}\right)$ be any sequence, and $t \in \mathbb{R}$. then $\left(S_{n}\right)$ has a subseq converge to t if and only if $\forall \varepsilon>0$, the set $A_{\varepsilon}=\left\{n \in \mathbb{N}|\quad| s_{n}-\left.t\right|_{\mathbb{\mathbb { }}}<\varepsilon\right\}$ is infinite. $s_{n} \in(t-\varepsilon, t+\varepsilon)$

Pf: "only if" V.
"if": if we consider the subseq $\left(S_{n}\right)_{n \in A_{\varepsilon} \text {, but }}$
$\left(S u_{n \in A_{\varepsilon}}\right.$ does not converge to t.

height is $(t-1, t+1)$
racine

$$
A_{\varepsilon}=\left\{n| | s_{n}-t \mid<\varepsilon\right\} .
$$

$n_{1} \in A_{1}$,
$n_{2} \in\left\{n>n_{1}\right\} \cap A \frac{1}{2}$
$\underline{n_{3}} \in\left\{n>n_{2}\right\} \cap A \frac{1}{3}$.

$$
\begin{gathered}
\Rightarrow \quad n_{1}<n_{2}<n_{3}<\cdots \\
\left|s_{n_{k}}-t\right|<\frac{1}{k}
\end{gathered}
$$

hence $\left(S n_{k}\right)_{k} \rightarrow t$.

