Plan for this course: follow Ross

1. Limit. convergence of numbers. (Ch 2). midterm 1.
2. Function. continuous function.
3. Limit, convergence of functions. $(\mathrm{Ch} 4)$)
4. Differentiation \& Integrals.

Today: what is the real number \mathbb{R}, why we need it?
\mathbb{N} : natural number. $=\{1,2,3, \ldots\}$.

- supports operation : addition. multiplications.
" "successor". the successor of n is $n+1$.
\rightarrow chain like structure

$$
2 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots
$$

\rightarrow mathematical induction:

- statement / proposition. depending on n, call it P_{n}.
- rant to show P_{n} is true for all $n \in \mathbb{N}$.
- can do it by $\left\{\begin{array}{l}\text { show it for } P_{1 .} \text { (base step) } \\ \text { show that } P_{n} \text { holds } \Rightarrow P_{n+1} \text { hold. }\end{array}\right.$

Ex (from Ross book).
\downarrow for all.
induction step)

- $\quad|\sin (n x)| \leqslant n \cdot|\sin x| . \quad \forall n \in \mathbb{N}$. and $x \in \mathbb{R}$.
- $5^{n}-4 n-1$ are divisible by 16.
see the proof from the book.
- \mathbb{Z} : integers. $\cdots-2,-1,0,1$,
- has subtraction.
- 0 is distinguished. $\quad 0+n=n$.
(\mathbb{Z} is an example of "ring")

$$
n, m \in \mathbb{Z} .
$$

QQ: rational number. $\quad\left(\frac{n}{m}, m \neq 0\right)$

- has division operation.
- Q support. : $, 1,+,-\ldots$ computability condition. ξ e.g. $(a+b) \cdot c=a c+b c$.
\mathbb{Q} is a field, (see definition f field. §3). $a b=b \cdot a$.
- Q has "ordering", i.e. ("ordered field" in Ross). claim:
-Q has "defects", " $\sqrt{2}$ is not in \mathbb{Q}.
$\sqrt{2}$ is a root of $x^{2}-2=0$.

Proposition: If r is a rational number, and is a root of the following integer coefficient polynomial.

$$
C_{n} \cdot x^{n}+C_{n-1} \cdot x^{n-1}+\cdots+c_{0}=0
$$

$$
\left(c_{0} \neq 0, c_{n} \neq 0\right)
$$

then. $\quad\left\{\begin{array}{l}d \text { divide. } c_{n} . \\ c \\ \text { divide } c_{0} .\end{array}\right.$
$P f: P l u g$ in $r=\frac{c}{d}$ to the equation.

$$
c_{n}\left(\frac{c}{d}\right)^{n}+c_{n-1}\left(\frac{c}{d}\right)^{n-1}+\cdots+c_{0}=0
$$

multiply by d^{n}. on both sides. we get

$$
C_{n} \cdot C^{n}+C_{n-1} \cdot C^{n-1} \cdot d+C_{n-2} \cdot C^{n-2} \cdot d^{2}+\cdots+C_{0} \cdot d^{n}=0
$$

(1) put $c_{0} \cdot d^{n}$ on one side,

$$
\begin{aligned}
C_{0} \cdot d^{n} & =-\left[C_{n} \cdot C^{n}+C_{n-1} \cdot C^{n-1} \cdot d+\cdots+C_{1} \cdot C^{1} \cdot d^{n-1}\right] \\
& =-C\left[C_{n} \cdot C^{n-1}+C_{n-1} C^{n-2} \cdot d+\cdots+C_{1} \cdot d^{n-1}\right] .
\end{aligned}
$$

- if both side equal to 0 , then $C_{0} \cdot d^{n}=0 \Rightarrow \frac{c_{0}=0}{\text { or } d=0}$ but this is not allowed.
- thus $c \mid C_{0} \cdot d^{n}$, since c and d are co-prime. $\Rightarrow c \mid c_{0}$.
(2). put $C_{n} \cdot C^{n}$ on the other side,

$$
c_{n} \cdot c^{n}=-d[\cdots \cdot
$$

by similar arguments

$$
\left.\begin{array}{l}
d \mid C_{n} \cdot C^{n}, \\
\operatorname{ged}(d, c)=1 .
\end{array}\right\} \Rightarrow d \mid C_{n} .
$$

Cor: if $r=\frac{c}{d} \neq 0$ is a root of a monic polynomial", i.e. lead term has coeff 1 .

$$
x^{n}+C_{n-1} x^{n-1}+\cdots+C_{0}=0 .
$$

then r is an. integer.
Pf: since $d \mid c_{n}=1$, hence $d=1$.

Apply this to $x^{2}-2=0$. If $r=\sqrt{2}$ is a rational number, then $\sqrt{2}$ should be an integer. contradition.

$$
\text { in } \mathbb{C}=\{a+i b \mid a, h \in \mathbb{R}\}
$$

F if we add in all the roots for \mathbb{Q}, we still do not get \mathbb{R}, but the "algebraic closure". $\overline{\mathbb{Q}} \supset \mathbb{Q}$. In other word, $\exists x \in \mathbb{R}$, that does not satifiy any. integer coefficient polynomial equations. e.g. π, e.

- R.P QQ. , completeness axioms. (\$4). next time.
\qquad
\qquad (
\qquad

