Plan for this semester:
(c hi) Ross.
$\left\{\right.$. \mathbb{R}, convergence. of sequence of numbers. $\left\{a_{n}\right\} .\binom{$ midterm }{1}
$\frac{\text { function. convergence of sequeme of functions. (midterm 2). }}{\frac{R}{d x} \text {. }}$.

- Today: $\mathbb{R} \supset \mathbb{Q} \supset \mathbb{Z} \supset \mathbb{N}$.
- \mathbb{N} : natural number. $\{1,2,3,4, \ldots\}$.
allowed operation: $\quad t, \bullet$,
"successor" "e.g. "the successor of 3 is 4",
- Property of \mathbb{N}; if $S \subset \mathbb{N}$, such that

$$
\left\{\begin{array}{ll}
0 & 1 \in S \\
: & n \in S
\end{array} \Rightarrow n+1 \in S\right.
$$

then $S=\mathbb{N}$.

- Mathematical induction :
- Let P_{n} be a proposition, that depends on $n \in \mathbb{N}$, e.g. $\quad P_{n}=" n(n+1)$ is an even number
- induction is a way to prove P_{u} holds for all $n \in N$. by $\left\{\begin{array}{l}\text { 0 show } P_{n} \text { is true for } n=1 \\ \text {. show that if } P_{n} \text { is true }\end{array}\right.$
. show that if P_{n} is true, then P_{n+1} is true. if welt $S=\left\{n \mid P_{n}\right.$ is true $\}$., then $S=\mathbb{N}$.
$\Rightarrow P_{n}$ is true for all $n \in \mathbb{N}$.
- Ex: (from Ross)
(1) $|\sin (n x)| \leqslant n \cdot|\sin (x)| \quad \forall n \in \mathbb{N}, \forall x \in \mathbb{R}$.
12). see the book.
- $\mathbb{Z}=\{\cdots-3,-2,-1,0,1,2,3, \cdots\}$. $+, \cdots,-\llbracket$ subtraction.

0 is distingushed, in that $0+a=a$.
1 is -, in that $1 \cdot a=a$.
$\forall n \in \mathbb{Z}, \quad \exists$ a uniquer element in \mathbb{Z}, ie. $-n . \quad(-n)+(n)=0 . \leftleftarrows(c \cdot f$. Abstract Algebra).
I \mathbb{Z} is an example of a "ring", i.e. a gadget \& that support t, \cdots, \cdots has the analog of $0,1, \cdots$.

- ©. rational number, $\left\{\left.\frac{n}{m} \right\rvert\, n, m \in \mathbb{Z}, m \neq 0\right\}$.
- operation it supports: $t,-, \cdots, 1$.
- \mathbb{Q} is example of "field" τ division
see definition in Ross.
- QQ is an order field, i.e. there is a notion of " \leqslant ". $\quad\left(e_{. j} 3 \leqslant 4\right) . \quad a<. b$
Γ claim:
\mathbb{C} is not an ordered field.
"

$$
\{a+i b \mid a, b \in \mathbb{R}\} .
$$

Q1: why not. Can I declare that

$$
\begin{aligned}
& (a, b) \leqslant(c, d) \\
& \mathbb{1} \simeq \mathbb{R}^{2}
\end{aligned} \quad \text { mean }\left\{\begin{array}{l}
\text { oo } a<c \\
\text { or } \begin{array}{l}
\text { if } a=c \\
b<d \\
\text { or }(a, b)=(c, d) .
\end{array}
\end{array}\right.
$$

- (1) is not all the story. i.e. solve equation $x^{2}-2=0$,
claim: $\pm \sqrt{2}$ are not in \mathbb{Q} (not every expression involving $5 \underbrace{\text { isirational }}_{\text {is see }} E_{x} 2.7$ in Ross)
Prop: If $r=\frac{c}{d} \in \mathbb{Q}$ is a rational number., and r satisfies the equation

$$
c_{n} \cdot x^{n}+c_{n-1} \cdot x^{n-1}+\cdots+c_{0}=0
$$

with $C_{i} \in \mathbb{C} ., \quad C_{n} \neq 0, \quad C_{0} \neq 0$.
then. $\left\{\begin{array}{l|l}d & C_{n} \\ c & C_{0} .\end{array}\right.$

Pf: Plug in $r=\frac{c}{d}, \quad(\operatorname{gcd}(c, d)=1)$, to the eq.
(1).

$$
\begin{aligned}
C_{0} \cdot d^{n} & =-\left(C_{n} \cdot C^{n}+C_{n-1} \cdot C^{n-1} \cdot d+\cdots+C \cdot C \cdot d^{n-1}\right) \\
& =-C \cdot \underbrace{C_{n} \cdot C^{n-1}+C_{n-1} \cdot C^{n-2} \cdot d+\cdots+C_{1} \cdot d^{n-1}}_{\text {an integer }})
\end{aligned}
$$

$$
\Rightarrow \quad c \mid c_{0} \cdot d^{n}
$$

more over, since c and d are co. prime,

$$
\Rightarrow \quad c \mid C_{0} .
$$

(2). similarly, if we single out the first term.

$$
\begin{aligned}
& d^{n} \int_{n}^{C_{n}\left(\frac{c}{d}\right)^{n}+\cdots+C_{0}(1)=0} \\
& C_{n} \cdot C^{n}+C_{n-1} \cdot C^{n-1} \cdot d+\cdots+C_{1} \cdot C^{1} \cdot d^{n-1}+C_{0} \cdot d^{n}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& C_{n} \cdot C^{n}=-d \cdot(\text { some integer }) . \\
\Rightarrow & d\left|C_{n} \cdot C^{n} \Rightarrow d\right| C_{n} .
\end{aligned}
$$

pleading corf.
Con: if $C_{n}=1$. then $d=1$, i.e. r is an integer.

Pf of claim that " $\sqrt{2}$ is not in \mathbb{Q} ":
suppose $\sqrt{2}$ is rational, then since $\sqrt{2}$ is root of $x^{2}-2=0$. Then $\sqrt{2}$ is an integer, which is impossible., heme $\sqrt{2}$ is not rational
\mp. What is in \mathbb{R} but not in \mathbb{Q} ?

- fact: it is not enough to add in just real roots of polynomial equations with \mathbb{Z}-coefficient.
- i.e. $\exists b \in \mathbb{R}$, s.t. \underline{b} does not satisfy any. polynomial eq. with \mathbb{Z}-coff

For example: π, e are such number. "transcendental
(. $\mathbb{R} \supset \mathbb{Q}$ and satisfies a completeness axiom:
i.e if $S \subset \mathbb{R}$ is bounded from above, then. $\sup (S)$ exists. in \mathbb{R}. least upper bound.

