Today's Plan:

1. (\$4). Completeness Axiom.
2. (\$7). Definition of seq \& Limit.

Recall last time:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$,
- Rational zeros of polynomials. $\Rightarrow \sqrt{2}$ is not a rational number.

Today : $\quad \operatorname{Def}^{\prime} n . \quad S \neq \phi$

- max, min: Let $S \subset \mathbb{R}$, we say an element $\alpha \in S$ is a maximum, if $\forall \beta \in S, \alpha \geqslant \beta$. Similianty, $\alpha \in S$ is a minimum, if $\forall \beta \in S, \quad \alpha \leqslant \beta$.

Rok: $\quad$ max, min are inside the set $S$.

- they are not guaranteed to exist.

Ex: (1). $S=\{1,2,3,4\} . \quad \max (S)$ exists. $\max (S)=4$ $\min (S)$ exists, $\quad \min (S)=1$.
(2). $S=[1,2]=\{x \mid 1 \leq x \leq 2\}$

$\max (S)=2, \quad \min (S)=1$
(3) $S=[1,2)=\{x \mid 1 \leq x<2\}$
$\max (S)$ does not exist.

$$
\begin{array}{ll}
\forall x \in S, & x+\left(\frac{2-x}{2}\right) \in S \\
& x+\left(\frac{2-x}{2}\right)>x
\end{array}
$$


$\Rightarrow x$ is not a maximum.

Q2: why not use $1.999 \ldots$ ?
it turns out, $1.999 \ldots=2$ \& $S$.

- Upper bound, lower bound.

Deft Let ${ }^{\bullet} \phi \neq S \subset \mathbb{R}$.,
(a) Let $d \in \mathbb{R}$. We say $\alpha$ is an
 upper bound of $S$. if $\forall \beta \in S, \quad \beta \leqslant \alpha$.
(b) Let $\alpha \in \mathbb{R}, \alpha$ is an lower bound of $S$, if $\forall \beta \in S, \quad \alpha \leqslant \beta$.
a lower bound.

they are

- Rum: - far from unique.
- may not exists. (eeg. $S=\mathbb{R}$ ).

Ex: - $S=\left\{\right.$ roots in $\mathbb{R}$ of $\left.x^{3}-x+5=0\right\}$. graph of $(Q$ : is $S$ non empty? yes.


100 is an upperbound of $S$.
$\Leftrightarrow x \geqslant 100$. , then $x^{3}-x+5>0$.
hence $\quad x \notin S$. Thus, if $x \in S, \quad x<100$.

$$
\text { or } S=(5,10), \quad S=[5,10) \text {. }
$$

- $S=[5,10]$, an upper bound can be taken as 11 . 1 is a lower bound.
- 10 is an cepperboud, 5 is a lower bound.
- Def: (sup, inf). Let $S$ be a nou-empty subset of $\mathbb{R}$. $(\phi \neq S \subset \mathbb{R})$.
(a) if $S$ is bounded above. (ie.. there exists an upper bound for S), and $S$ has a least upper bound., then we call it the supremum of, denoted as sup S..
(b). if $S$ is bounded below and $S$ has a greatest. lower bound, then we call it infimum of $S$, denoted as inf $S$.
- UBs $S=\{x \mid x$ is an upper bound of $S\}$.
$S$ is bounded above $\Leftrightarrow U B_{S}$ is nonempty $S$ has a least upper $\Leftrightarrow \min \left(U B_{S}\right)$. exists.

Ex: $\quad S=(0,1)$. $\max (S)$ doesn't exist.
lower bounds. Least upper bound $(S)=1$.
$L B_{5}$

$$
S
$$

$$
U B_{S}
$$

- $\quad S=[0,1] . \quad \max (S)=1$.
$\max (S)$, if exists, is always an ypper bound. actually, the least capper bound.

Completeness Axiom:
Every non-empty subset $S \subset \mathbb{R}$ that is bounded above has a least upper bound.

Cor: if $S$ is bounded from below, then. $\inf S$ exists.
\$ i idea

$$
\text { consider }-S=\{-x \mid \quad x \in S\}
$$


(read the actual proof in). Ross
$P f:$ Since $S$ is bounded from below, $\exists m \in \mathbb{R}$, s.t. $m \leq S, \forall s \in S, \Rightarrow-m \geqslant-s, \quad \forall s \in S$.

$$
\text { i.e. }-m \geqslant u . \quad u \in-S
$$

hence $-m$ is an upper bound of $-S$.
Now, apply the completeness Axiom, sup ( $-S$ ) exists.
let $\alpha=\sup (-S)$. Claim. inf $(S)=-\alpha$. We need to prove $\left\{\begin{array}{l}0=\alpha \text { is a lower bound of } S \\ 0-\alpha \text { is the greatest lower bound of } S \text {. }\end{array}\right.$

$$
\Leftrightarrow\left\{\begin{array}{l}
\alpha \text { is an upper bound of }-S . \\
. \alpha \text { is the least. upper bound of }-S .
\end{array}\right.
$$

Archimedian Property:
If $, \underline{a}>0, \underline{b}>0$ are real numbers, then for some $n \in \mathbb{N}$, we have $\quad n \cdot \underline{a}>b . \quad\left(\Leftrightarrow a>\frac{b}{n}\right)$

Pf: We assume Archimedian property does not always hold. That is, $\exists a>0, b>0$, such that for all $n \in \mathbb{N}$. $n \cdot a \leqslant b$.
Let $S=\{n a \mid n \in \mathbb{N}\}$. Then $b$ is an upper bound of $S$. By completeness Axioms, we have $\sup (S)$ exists. Let $S_{0}=\sup (S)$. Since $a>0$, we have

$$
S_{0}<S_{0}+a
$$

$$
\Rightarrow \quad S_{0}-a<S_{0}
$$

By the definition of least upper bound. So -a is not an upper bound of $S$. Then $\exists n a \in S$, s.t.

$$
n a>S_{0}-a . \quad \Rightarrow \quad n a+a>S_{0} .
$$

But $n a+a=(n+1) \cdot a \in S$, so $n a+a>s_{0}$ contradict with So being an upper bound of $S$. Hence the assumption that A.P. fails is wrong.

Rok: * $\forall a>0$. no matter how small, $\exists n \in \mathbb{N}$.

$$
a \cdot n>1, \quad \Leftrightarrow a>\frac{1}{n} .
$$

-37. Definition of Sequence and Limits. of real numbers.

- A sequence is a collection of enctoctell numbers, indexed by $n \in N$. $a_{1}, a_{2}, a_{3}, \cdots$ where $a_{n} \in \mathbb{R}$.
( a function $\mathbb{N} \rightarrow \mathbb{R}$ ).
Ex: $\quad a_{1}=1, \quad a_{2}=2, \quad a_{3}=3, \cdots, \quad a_{n}=n$,
(no (imit).

$\binom{\text { limit exist }}{\text { equal }=1}_{0}$

$$
a_{n}=1 \quad, \quad \forall n \in \mathbb{N} .
$$

constant sequeme.
(no limit)
$a_{n}=\sin (n)$.



$$
\begin{array}{ll}
(\text { limit }=0) & a_{n}=\frac{1}{n} \cdot \sin (n) . \\
(\text { limit }=0) . & a_{n}=\frac{1}{n} \cdot(-1)^{n} .
\end{array}
$$

(1. a dot jumping on the real line. forever. non. stop".

- Read: $\left(\begin{array}{ll}\$ 4, & \text { Density of } \mathbb{Q} \text { in } \mathbb{R} . \\ \$ 5 . & -\infty,+\infty .\end{array}\right.$

