Today: (1) $\mathbb{R}, \quad \operatorname{sep} \& \inf , \pm \infty$
(2) sequame $\left\{a_{n}\right\}$ limit.

Recall: (1) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$. Rational Roots of polynomials with \mathbb{Z}-coeff.

$$
\Rightarrow \sqrt{2} \notin \mathbb{Q}
$$

(1) Maximum and Minimum (of a set of numbers).

Def: Let S be a non-empty subset of real numbers.
(1) We say a real number α is a maximum of S, if $\alpha \in S$, and $\alpha \geqslant \beta \quad \forall \beta \in S$.
(2) - - $-\alpha$ is a minimum of S, if $\alpha \in S$, and $\alpha \leqslant \beta, \quad \forall \quad \beta \in S$.

Rok: (1) if α_{1}, α_{2} are both maximum of S, then

$$
\alpha_{1} \geqslant \alpha_{2}, \quad \alpha_{2} \geqslant \alpha_{1} \quad \Rightarrow \quad \alpha_{1}=\alpha_{2}
$$

Thus maximum of S is unique (if it exists)., we use $\max (S)$ to denote it.
(2). $\max (S)$ may not exists.

$$
\text { eng. (for example). • } S=\mathbb{R} \text {. }
$$

empty set. $S=(0,1)$ open interval.
(3). If $\phi \neq S \subset \mathbb{R}$ is a finite subset, then $\max (S)$ exist.
(2). Upper bound and Lower bound (of a set of $\begin{aligned} & \text { numbers }\end{aligned}$).

Ex: $\quad S=(0,1)$. Then, any $\alpha \geqslant 1$, is an upperbound of S. Any $\alpha \leq 0$, is a lower bound.

Same is true, for $S=[0,1]$, or $[0,1),(0,1]$.

Def: Let $\phi \neq S \subset \mathbb{R}$.

- We say $\alpha \in \mathbb{R}$ is an upper a bound. of S bound of S, if

$$
\alpha \geqslant \beta . \quad \forall \beta \in S
$$

- $\alpha \in \mathbb{R}$ is a lower bound, if

$$
\alpha \leqslant \beta
$$

$$
\forall \beta \in S .
$$

Rmk: again, the upper or lower bound may not exists, (egg. $S=\mathbb{R}$).

- If S has an upper bound, we say S is "bounded above".
- If S has a lower bound, we say S is bounded below.

$$
S=(-\infty, 1)
$$

bounded above.
S is bounded.

If S is bounded above,

- Least upper bound of $S:=\min \{\alpha \mid \alpha$ is an $\}$.

$$
\sup (S)
$$ upper bound of S sup short for supremum.

if S is bounded below, then

- great lower bound of $S:=\max \{\alpha \mid \alpha$ is a lower $\}$ bound of S.

$$
\begin{aligned}
& \text { "infimum of } S " \\
& =\inf (S) \text {. }
\end{aligned}
$$

Ex: (1). $S=\{1,2,3\}$.

$$
\begin{array}{ll}
\max (S)=3, & \sup (S)=3 \\
\min (S)=1, & \inf (S)=1
\end{array}
$$

- if $\max (S)=\sup (S), \quad \inf (S)=\min (S)$., and if S is $\Rightarrow \quad S$ is a closed (bounded) interval. connected.
- if $\max (S)$ exists: then $\sup (S)=\max (S)$.
(2). $S=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}=\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots\right\}$.

$\max (s)$ doesn't exist.
Г pf: if it does exist, then it is of the form $1-\frac{1}{n_{0}}$, for some $n_{0} \in \mathbb{N}$, But

$$
S \ni 1-\frac{1}{n_{0}+1}>1-\frac{1}{n_{0}}
$$

this contradict with the requirement, that

$$
\max (s) \geqslant \beta \quad \forall \beta \in S .
$$

$\sup (S)=1$.
Pf: (1) need to check 1 is an upper bounder. of S. Indeed, $1>1-\frac{1}{n}, \quad \forall n \in \mathbb{N}$.
(2) need to cheek that $\forall \alpha<1, \quad \alpha$ is not an upper bound. of S. (Not so rigourrously), there exists an n, large enough, such that

$$
\alpha<1 \Rightarrow \exists n \in \mathbb{N}, \quad \alpha<1-\frac{1}{n} . \quad \Leftrightarrow \text { show } \quad \forall \varepsilon>0, \quad \exists n \in \mathbb{N} \text {. }
$$ thus α is not an upper bound of S.

Completeness Axiom: Let $\phi \neq S \subset \mathbb{R}$. If S is bounded from above, then $\sup (S)$ exists.

Cor: if S is bounded from below, then inf (S) exists.
pf: consider the set $-S=\{-x \mid x \in S\}$., then it is bounded from above, and claim: $\inf (S)=-\sup (-s)$.

Archimedian Property: (A.P.)

- if $a, b>0$., then $\exists n \in \mathbb{N}$, sit. $n a>b$.
- Pf: Suppose A.P. fails for some pair of $a, b>0$. That is, $\forall n \in \mathbb{N}, \quad n a \leqslant b$. Let $S=\{n a \mid n \in \mathbb{N}\}$. then by assumption on a, b, S is bounded above by b_{a} By completeness axiom, $\operatorname{sep}(S)$ exists. denoted as So.

$$
S_{0}>S_{0}-a \quad(\because a>0) \text {. }
$$

that means, So -a is not an upper bound of S. (since S_{0} is the minimum of all possible upper bound).

$$
\begin{array}{ll}
\Rightarrow \quad \exists n \in \mathbb{N}, \quad \text { sit. } & n a>S_{0}-a . \\
\Rightarrow & \\
& (n+1) a>S_{0}
\end{array}
$$

$\Rightarrow \quad$ So is not an upper bound of S.
contradiction!

- $+\infty,-\infty$.
- $\mathbb{R}:=\mathbb{R} \cup\{-\infty,+\infty\}$ as a set with ordering. sit. $\forall a \in \mathbb{R}, \quad-\infty<a$, and $a<+\infty$

- If ${ }^{\phi} S \subset \mathbb{R}$, we say $\sup (S)=+\infty \Leftrightarrow S$ is not bounded from above. similarly, $\inf (S)=-\infty$ means. S is not bounded below.

Ch 2. Sequemes. \& Limits.
(§7). Example \& Definitions.

A sequeme of real numbers. is the following data.

$$
a_{1}, a_{2}, a_{3}, \cdots . \quad a_{n} \in \mathbb{R} \quad \forall n \in \mathbb{N} .
$$

Fore formally, \quad a function, $\quad \mathbb{N} \rightarrow \mathbb{R}$.

Ex: (1) constant sequence :

$$
3,3,3, \ldots
$$

(2). $1,2,3,4, \ldots$
(3). $1,-2,3,-4, \ldots$
(4). $1, \frac{1}{2}, \frac{1}{3}, \cdots \quad a_{n}=\frac{1}{n}$.
(5). $1,2,4,8, \cdots \quad a_{n}=2^{n-1}$

Ex: How to construct a sequence of rational numbers. that gets closer and closer to $\sqrt{2}$?
one way: write $\sqrt{2}$ as decimal $1.414 \cdots$ then define $a_{n}=1 \cdot \underbrace{414 \cdots}_{\text {keep } n \text { digits after }}=1+\frac{414 \cdots \cdot}{10^{n}} \in \mathbb{Q}$ the period.

Rok: Sequeme is useful for "approximation".

Definition (Limit): We say a sequeme $\left(a_{n}\right)_{n \in \mathbb{N}}$, has limit $\alpha \in \mathbb{R}$, if $\forall \varepsilon>0 . \exists N>0$. such that
for all positive integer n, with $n \geq N$, we have.

$$
\left|a_{n}-\alpha\right|<\varepsilon .
$$

$$
\lim _{n \rightarrow \infty} a_{n}=\alpha .
$$

dam:
Ex: (1) $a_{n}=1-\frac{1}{n}$. $\lim a_{n}=1$.

(2). $a_{n}=\frac{1}{n} \cdot \sin (n)$.

$$
\lim _{n} a_{n}=0
$$

(3). $\quad a_{n}=\left(1+\frac{1}{n}\right)^{n}$

$$
\lim _{n \rightarrow \infty} a_{n}=e^{\text {non.tricial. }} \text {. }
$$

