Recall:
$$O$$
 N, Z, Q. Rational Rowts of polynomials with Z-coeff.
 \Rightarrow 52 & Q

(1) Maximum and Minimum (of a sot of numbers).
Def: Let S be a non-empty subset of real numbers.
(1) We say a real number
$$\alpha$$
 is a maximum of S,
if $\alpha \in S$, and $\alpha \neq \beta$ $\forall \beta \in S$.
(2) - - - - α is a minimum of S,
if $\alpha \in S$, and $\alpha \leq \beta$, $\forall \beta \in S$.

Ruk: (1) if
$$\chi_1, \chi_2$$
 are both maximum of S , then
 $\chi_1 \neq \chi_2, \qquad \chi_2 \neq \chi_1 \qquad \neq \qquad \chi_1 = \chi_2.$
Thus maximum of S is unique (if it exists).,
we use max(S) to denote it.

Ex:
$$S = (0,1)$$
. Then, any $0,71$, is an upper bound of S. Any $0,50$, is an lower bound

Same is true, for S = Lo, 1], or [0, 1], (0, 1]. a bound.

°F S

S

$$\underline{Rmk}$$
: again, the upper or lower bound may not exists, (e.g. $S=R$).

If S has an upper bound, we say S is "bounded above".
IS S has a lower bound, we say S is bounded below.
S=(-10,1) S=(-1,10) S is bounded.

bounded above.

bounded below.

if S is bounded below, then
great lower bound of
$$S := \max \{\alpha \mid \alpha \text{ is a lower } \}$$

"infimum of S"
= inf(S).

$$E_X: (1), \quad S = \{1, 2, 3\}.$$

$$max(S) = 3, \quad sup(S) = 3.$$

$$min(S) = (1, \quad inf(S) = 1.$$

$$if max(S) = sup(S), \quad inf(S) = min(S), \quad and \quad if \quad S \quad is$$

(2).
$$S = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\} = \{0, \frac{1}{2}, \frac{3}{3}, \frac{3}{4}, \dots\}$$

max (S) doesn't exist.

$$\begin{bmatrix} PF : & if & if does exist, & then & it & is & of & the form \\ & & I-h_o & , & for some & n_o \in \mathcal{N}, & But \\ & & & S \geqslant I-\frac{1}{h_o+1} \geqslant & I-\frac{1}{h_o}. \end{bmatrix}$$

this contradict with the requirement, that

$$max(5) \neq \beta \qquad \forall \beta \in S$$
.
 $sup(S) = 1$

$$sup(S) = 1.$$

$$\boxed{Pf: O need to check 1 is an upper bounder of S.}$$

$$\boxed{Indeed, 171-fr, 4nEN.}$$

€ need to check that
$$\forall \alpha < 1$$
, α is
not an upper bound of S. (Not so rigourously), there
exists an n, planze enough, such that
 $\alpha < 1 \Rightarrow \exists n \in \mathbb{N}$., $\alpha < 1 - \frac{1}{n}$. $\Rightarrow \exists n \in \mathbb{N}$., $\alpha < 1 - \frac{1}{n}$. $\Rightarrow \exists n \in \mathbb{N}$. α is not an upper bounde of S.

Completeness Axion: Let
$$\emptyset \neq S \subset \mathbb{R}$$
.
If S is bounded from above, then $\sup(S)$ exists.
Con: if S is bounded from below., then $\inf(S)$

exists.

$$pf:$$
 consider the set $-S = \{-x \mid x \in S\}$, then
it is bounded from above, and claim: $inf(S) = -sup(-s)$.
 $-S$ $sup(-s)$ S
 -1 o

Archimedian Property: (A.P.)
• if a, b >0., then
$$\exists n \in N$$
, s.t. $na > b$.
• Ef: Suppose A.P. fails for some pair of o a, b >0.
That is, $\forall n \in N$, $na \leq b$, Let $S = \{na \mid n \in N\}$?
then by assumption on a.b. S is bounded above by b .
By completeness axion, $suep(S)$ exists. denoted as So.
So $> So - a$ (: $a > 0$.)
that means, $So - a$ is not an upper bound of S .
(since So is the minimum of all possible upper bound).
 $\Rightarrow \exists n \in N$, s.t. $na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$.
 \Rightarrow ($n + na > So - a$

• If $S \subset R$, we say $sup(S) = +tO \Leftrightarrow S$ is not bounded from above, similarly, inf(S) = -tO means. S is not bounded below.

(h.2. Sequences & Limits.
(§7). Example & Definitions.
A sequence
$$f$$
 real numbers. is the following data.
 a_1, a_2, a_3, \dots $a_n \in \mathbb{R}$ is new.
There formally. If a function, $N \rightarrow \mathbb{R}$.
 (1) constant sequence:
 $3, 3, 3, -\cdots$
(2). $1, 2, 3, 4, \cdots$
(3). $1, -2, 3, -4, \cdots$
(4). $1, \frac{1}{2}, \frac{1}{3}, \cdots$ $a_n = \frac{1}{n}$.
(5). $1, 2, 4, 8, \cdots$ $a_n = 2^{n-1}$
Ex: How to construct a sequence of rectional numbers.
that gets closer and closer to JZ ?
me may: write JZ as decimal $1.444 \cdots$

then define
$$a_n = 1.414... = 1 + \frac{414...}{10^n} \in Q$$

Keep n digits after
the period.

Rock: Sequence is useful for "approximation".

<u>Definition</u> (Limit): We say a sequence $(a_n)_{n \in \mathbb{N}}$, has limit $\alpha \in \mathbb{R}$, if $\forall z > 0$. $\exists N > 0$. Such that

N->1~