Today: Sequence and Limit.

1. Definitions:

- sequence: $\quad a_{1}, a_{2}, a_{3}, \ldots$
$a_{n} \in \mathbb{R}$.
denote a sequence as $\left(a_{n}\right)_{n \in \mathbb{N}}$.
Rmk: $\left\{\begin{array}{l}\text { sequence is not a set, }\left\{a_{n}\right\}_{n \in \mathbb{N}} \neq\left(a_{n}\right)_{n \in \mathbb{N} .} \\ \text { sequence has its element cone in order. (first., second, …) } \\ \text { set is just information about "Who is in the set". }\end{array}\right.$
- Limit: We say a sequence $\left(a_{n}\right)_{n}$ has limit $\alpha \in \mathbb{R}$, if $\forall \varepsilon>0$, there exist a real number $N>0$, such that for all $n>N$, we have.

$$
\left|a_{n}-\alpha\right|<\varepsilon .
$$

We denote this by $\lim _{n \rightarrow \infty} a_{n}=\alpha$. (or in short $\lim a_{n}=\alpha$)
2.

(57,58) Prove by hand, the limit of a sequemce is ...
3. E_{x} :

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

1, $\frac{1}{2^{2}}, \frac{1}{3^{2}}$,

$$
\text { graph. } f(x)
$$

idea:
$\forall \varepsilon>0$, we want have $\left|\frac{1}{n^{2}}-0\right|<\varepsilon$.

$$
\Leftrightarrow \frac{1}{n^{2}}<\varepsilon \quad \Leftrightarrow \quad \frac{1}{\varepsilon}<n^{2} \quad \Leftrightarrow \quad \frac{1}{\sqrt{\varepsilon}}<n .
$$

So, we can just toke $N=\frac{1}{\sqrt{\varepsilon}}$. Indeed, $\forall n>N$, we have $n>\frac{1}{\sqrt{\varepsilon}} . \Rightarrow n^{2}>\frac{1}{\varepsilon} \Rightarrow \varepsilon>\frac{1}{n^{2}} \Rightarrow \varepsilon>\left|\frac{1}{n^{2}}-0\right|$. (i.e. we met the challenge of showing the sequence eventually falls within ε-distance to \mathbb{O}).

Pf: $\forall \varepsilon>0$, we want have $\left|\frac{1}{n^{2}}-0\right|<\varepsilon$.

$$
\Leftrightarrow \quad \frac{1}{n^{2}}<\varepsilon \quad \Leftrightarrow \quad \frac{1}{\varepsilon}<n^{2} \quad \Leftrightarrow \quad \frac{1}{\sqrt{\varepsilon}}<n .
$$

So take $N=\frac{1}{\sqrt{\varepsilon}}$ is enough.
Ex: $\quad \lim _{n \rightarrow \infty} \frac{3 n+1}{7 n-4}=\frac{3}{7}, \frac{4}{3}, \frac{6+1}{10}, \frac{3 \cdot 3+1}{7 \cdot 3-4}, \ldots$
idea: $\left.\begin{array}{rl}3 n+1 & \approx 3 n \\ 7 n-4 & \approx 7 n\end{array}\right\}$ for n large.
heme $\quad \frac{3 n+1}{7 n-4} \approx \frac{3 n}{7 n}=\frac{3}{7 .}$
Pf:
$\forall \varepsilon>0$, we want n to be large enough. sit.

$$
\begin{aligned}
\left\lvert\, \frac{3 n+1}{7 n-4}\right. & \left.-\frac{3}{7} \right\rvert\,<\varepsilon \\
\frac{3 n+1}{7 n-4}-\frac{3}{7} & =\frac{(3 n+1) \cdot 7-3(7 n-4)}{(7 n-4) \cdot 7}=\frac{21 n+7-(21 n-12)}{(7 n-4) \cdot 7} \\
& =\frac{19}{(7 n-4) \cdot 7}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \quad\left|\frac{19}{(7 n-4) \cdot 7}\right|<\varepsilon . \quad \because \quad 19>0,7 n-4>0 \\
& \Leftrightarrow \quad \frac{19}{(7 n-4) \cdot 7}<\varepsilon \quad \Leftrightarrow \quad \frac{19}{7 \varepsilon}<7 n-4 . \\
& \Leftrightarrow \quad \frac{19}{7 \varepsilon}+4<7 n . \\
& \Leftrightarrow \quad n>\frac{\frac{1}{7}\left(\frac{19}{7 \varepsilon}+4\right)}{N}
\end{aligned}
$$

So, if we take $N=\frac{1}{7}\left(\frac{19}{7 \varepsilon}+4\right)$, then $n>N$

$$
\begin{aligned}
& \Rightarrow\left|\frac{3 n+1}{7 n-4}-\frac{3}{7}\right|<\varepsilon . \\
& \text { actuedy } \Leftrightarrow .)
\end{aligned}
$$

Ex: $\quad \lim _{n \rightarrow \infty} 1+\frac{1}{n}(-1)^{n}=1$.

Pf: $\forall \varepsilon>0$, we want n large enough, sit.

$$
\begin{aligned}
& \left|a_{n}-1\right| \leqslant \varepsilon . \Leftrightarrow\left|1+\frac{1}{n}(-1)^{n}-1\right|<\varepsilon \\
& \Leftrightarrow \quad\left|\frac{1}{n}(-1)^{n}\right|<\varepsilon . \\
& \Leftrightarrow \quad \frac{1}{n}<\varepsilon \quad \Leftrightarrow \quad n>\frac{1}{\varepsilon} .
\end{aligned}
$$

Just take $N=\frac{1}{\varepsilon}$, then $n>N \Rightarrow\left|a_{n}-1\right|<\varepsilon$.
89. Property and tools to find limit.

- Bounded sequence: a_{1}, a_{2}, \ldots is a bounded sequence, if $\exists M>0$, such $-M \leqslant a_{n} \leqslant M$ for all $n \in \mathbb{N}$.
- Tho: all comergent sequence are bounded.
idea:

say $\lim a_{n}=\alpha$.
Pf: Fix an $\varepsilon>0$, then by convergence of the sequeme $\exists N$, sit. $\forall n>N, \quad\left|a_{n}-\alpha\right|<\varepsilon . \Leftrightarrow \underline{\alpha-\varepsilon}<a_{n}<\underline{\alpha+\varepsilon}$
Let $C_{1}=\max (|\alpha+\varepsilon|,|\alpha-\varepsilon|)$.
then $\quad \alpha+\varepsilon \leqslant|\alpha+\varepsilon| \leqslant C_{1}$

$$
\alpha-\varepsilon \geqslant-|\alpha-\varepsilon| \geqslant-C_{1}
$$

then $a_{n} \in\left(-C_{1}, C_{1}\right)$.

or

Then. Let $M=\max \left(\left|a_{1}\right|, \cdots,\left|a_{n_{0}}\right|, C_{1}\right)$, we have $\forall n \in \mathbb{N}, \quad\left|a_{n}\right| \leqslant M$. Thus, the sequence is bounded.

- The: If $\lim a_{n}=\alpha$, and if $k \in \mathbb{R}$. then $\lim \left(k \cdot a_{n}\right)=k \cdot \alpha$.
Lea:

Pf: $\forall \varepsilon>0$, need to find N, sit. $\forall n>N$,

$$
\left|k a_{n}-k \alpha\right|<\varepsilon .
$$

If $k=0$, then automaticuls true can take $N=1$.

If $k \neq 0$, then $|k| \neq 0$. Then.

$$
\begin{aligned}
& \Leftrightarrow \quad|k| \cdot\left|a_{n}-\alpha\right|<\varepsilon \\
& \Leftrightarrow \quad\left|a_{n}-\alpha\right|<\frac{\varepsilon}{|k|} .
\end{aligned}
$$

- By convergence of a_{n} to α, if we set $\varepsilon^{\prime}=\varepsilon /|k|$, then $\exists N$, sit. $\forall n>N, \quad\left|a_{n}-\alpha\right|<\varepsilon^{\prime}=\varepsilon /|k|$. This N satisfies. our need.
- Thm: Let a_{n}, b_{n} be convergent sequemes. $\lim a_{n}=\alpha, \lim b_{n}=\beta$.

Then (1). $\lim \left(a_{n}+b_{n}\right)=\left(\lim a_{n}\right)+\left(\lim b_{n}\right)=\alpha+\beta$.
(2) $\quad \lim \left(a_{n} \cdot b_{n}\right)=\left(\lim a_{n}\right) \cdot\left(\lim b_{n}\right)=\alpha \cdot \beta$.
(3) if $a_{n} \neq 0 . \forall n$. and if $\alpha \neq 0$. then.

$$
\lim \left(1 / a_{n}\right)=\frac{1}{\alpha}
$$

Pf: (1.) $\forall \varepsilon>0$, wait. n large enough, sit.

$$
\begin{aligned}
& \left|a_{n}+b_{n}-(\alpha+\beta)\right|<\varepsilon \\
\Leftrightarrow & \left|\left(a_{n}-\alpha\right)+\left(b_{n}-\beta\right)\right|<\varepsilon . \\
\Leftrightarrow & \left|a_{n}-\alpha\right|+\left|b_{n}-\beta\right|<\varepsilon . \\
\Leftrightarrow & |A+B| \leqslant|A|+|B| . \\
\Leftrightarrow & \left|a_{n}-\alpha\right|<\frac{\varepsilon}{2} \text {, and }\left|b_{n}-\beta\right|<\frac{\varepsilon}{2} .
\end{aligned}
$$

we can let n be large enough, to achieve both conditions.
(2) $\forall \varepsilon>0$., want to show, if n is large enough, then.

$$
\begin{aligned}
& \left|a_{n} b_{n}-\alpha \cdot \beta\right|<\varepsilon . \\
a_{n}= & \underline{\alpha}+\left(a_{n}-\alpha\right), \quad b_{n}=\beta+\left(b_{n}-\beta\right) . \\
a_{n} \cdot b_{n}= & {\left[\alpha+\left(a_{n}-\alpha\right)\right] \cdot\left[\beta+\left(b_{n}-\beta\right)\right] . } \\
= & \alpha \cdot \beta+\left(a_{n}-\alpha\right) \cdot \beta+\alpha \cdot\left(b_{n}-\beta\right)+\left(a_{n}-\alpha\right)\left(b_{n}-\beta\right) .
\end{aligned}
$$

$$
a_{n} \cdot b_{n}-\alpha \beta=\left(a_{n}-\alpha\right) \cdot \beta+\alpha \cdot\left(b_{n}-\beta\right)+\left(a_{n}-\alpha\right) \cdot\left(b_{n}-\beta\right) .
$$

$\forall \delta>0, \exists \underline{N_{\delta}}$, such that $\left|a_{n}-\alpha\right|<\delta, \quad\left|b_{n}-\beta\right|<\delta, \forall n>N_{s}$.
thus. $\quad\left|a_{n} b_{n}-\alpha \beta\right| \leqslant\left|a_{n}-\alpha\right| \cdot|\beta|+|\alpha| \cdot\left|b_{n}-\beta\right|+\left|a_{n}-\alpha\right| \cdot\left|b_{n}-\beta\right|$.

$$
\leqslant \delta \cdot|\beta|+|\alpha| \cdot \delta+\delta^{2} .
$$

take $\delta<1$, then $\delta^{2}<\delta . \quad[\quad \delta(1+|\alpha|+|\beta|)$.

Now, we choose δ small enough. sit. $\quad \delta(1+|\alpha|+|\beta|)<\varepsilon$ take $\delta=\frac{1}{1+|\alpha|+|\beta|} \cdot \varepsilon$. (or if it $\geqslant 1$, take $\delta=1$). and let $N=N_{\delta}$, then $\quad \forall n>N$,

$$
\left|a_{n} b_{n}-\alpha \beta\right|<\delta .(1+|\alpha|+|\beta|) \leqslant \varepsilon .
$$

(3) $\forall \varepsilon>0$, want to show, if n large enough.
(neat

$$
\begin{aligned}
& \begin{array}{l}
\text { revisit). } \\
\text { rime }
\end{array}\left|\frac{1}{a_{n}}-\frac{1}{\alpha}\right|<\sum_{i} \\
& \Leftrightarrow\left|\frac{\alpha-a_{n}}{a_{n} \cdot \alpha}\right|<\sum_{0}
\end{aligned}
$$

need a Lemma, showing. $\left|\frac{1}{a_{n}}\right|$ is bounded above.
i.e. a_{n} is not arbitrarily close to 0 . Assume we have this claim, that. $\exists C>0, \quad\left|\frac{1}{a_{n}}\right|<C, \quad \forall n \in \mathbb{N}$, then.

$$
\begin{aligned}
& \Leftrightarrow \quad\left|\frac{\alpha-a_{n}}{a_{n} \alpha}\right|<\varepsilon \Leftarrow\left|\frac{\alpha-a_{n}}{\alpha}\right| \cdot C<\varepsilon . \\
& \Leftrightarrow \quad\left|\alpha-a_{n}\right|<\frac{\varepsilon}{C} \cdot|\alpha| .
\end{aligned}
$$

This can be met by convergemes of a_{n} to α.

