Sequeme: $\quad a_{1}, a_{2}, a_{3}, \cdots \quad a_{i} \in \mathbb{R} \quad i \in \mathbb{N}$.
Limit: Let a_{1}, a_{2}, \ldots be a sequence (real numbers). We say. a_{i} converge to $\alpha \in \mathbb{R}$ (veal number) $\left(\right.$ denoted as $\lim _{n \rightarrow \infty} a_{n}=\alpha$), if "for any" (veal number) $\forall \varepsilon>0$, we can find $N>0$, such that for any $n>N$. $n \in \mathbb{N}$, we have $\left|a_{n}-\alpha\right|<\varepsilon$.

- To have a limit, $\left|a_{n}-\alpha\right|$ needs to be $<\varepsilon$. for n large "distance between $\xrightarrow[\alpha]{\sim} \mathbb{a _ { n }}$

Ex: - $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.

$$
1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \cdots
$$

(s.t.)

Pf: $\forall \varepsilon>0$, we need to find an N, such that. $\forall n>N$.

$$
\begin{equation*}
\left|a_{n}-0\right|<\varepsilon . \tag{*}
\end{equation*}
$$

This requirement (*)

$$
\begin{array}{ll}
\Leftrightarrow & \frac{1}{n^{2}}<\varepsilon . \\
\Leftrightarrow & \frac{1}{\varepsilon}<n^{2} \\
\Leftrightarrow & \frac{1}{\sqrt{\varepsilon}}<n .
\end{array}
$$

So, if we take $\underline{N}=1 / \sqrt{\varepsilon}$, then if $n>N$, we have (*) satisfied.

$$
\text { - } \lim _{n \rightarrow \infty} \frac{2 n+5}{3 n+1}=\frac{2}{3} .
$$

idea: $2 n+5 \approx 2 n, \quad 3 n+1 \approx 3 n$.

$$
\frac{2 n}{3 n}=\frac{2}{3} .
$$

more vigorously. $\frac{2 n+5}{3 n+1}=\frac{\eta+\frac{5}{n}}{3+1 / n} \rightarrow \frac{2}{3} \cdot\left(\begin{array}{c}\text { why we can take } \\ \text { (imit of top } \\ \text { Gand bottom sepantely? }\end{array}\right)$
Pf: $\forall \varepsilon>0$, the requirement

$$
\begin{aligned}
&\left|a_{n}-\frac{2}{3}\right|<\varepsilon \\
& \Leftrightarrow\left|\frac{2 n+5}{3 n+1}-\frac{2}{3}\right|<\varepsilon . \\
&\left(\frac{2 n+5}{3 n+1}-\frac{2}{3}=\frac{(2 n+5) 3-(3 n+1) \cdot 2}{(3 n+1) \cdot 3}=\frac{15-2}{(3 n+1) \cdot 3}=\frac{13}{(3 n+1) \cdot 3}\right. \\
& \frac{13}{(3 n+1) \cdot 3}<\varepsilon . \Leftrightarrow \frac{13}{3} \frac{1}{\varepsilon}<3 n+1 .
\end{aligned}
$$

$$
\Leftrightarrow \frac{1}{3}\left(\frac{13}{3} \cdot \frac{1}{\varepsilon}-1\right)<n
$$

Let $N=\frac{1}{3}\left(\frac{13}{3} \frac{1}{\varepsilon}-1\right) \quad\binom{$ if this is negative, then }{ set $N=0}$.
then for any $n>N$, we have (*) satisfied. \#.
$\$ 9$ Tools to compute limits.
Slogan: (1) only the "tail" of a sequeme matters.
(2) if a sequence converge to a limit., then the tail part of the seq is "under control".

Thu: All convergent sequences are bounded.
i.e. if $\lim _{n \rightarrow \infty} a_{n}=\alpha$., then $\exists M>0$, such that

$$
-M \leqslant a_{n} \leqslant M \quad \forall n \in \mathbb{N} . \quad\left(\Leftrightarrow .\left|a_{n}\right| \leqslant M\right)
$$

Pf: Fix an $\varepsilon>0$, then $\exists N>0$, s.t. $\left|a_{n}-\alpha\right|<\varepsilon \quad \forall n>N$.
Hence, $\quad \alpha-\varepsilon<a_{n}<\alpha+\varepsilon, \forall n>N$.
let $\quad C_{1}=\max \{|\alpha-\varepsilon|,|\alpha+\varepsilon|\}$.

$$
C_{2}=\max \{\underbrace{\left|a_{n}\right| \mid \cdot n \leqslant N \quad n \in \mathbb{N} \text { finite set. }}_{a}\}
$$

then. $\forall \stackrel{\sim}{n}>N, \quad\left|a_{n}\right|<C_{1}$

(2). $\quad \forall n \leqslant N$,

$$
\begin{aligned}
&(\alpha-\varepsilon, \alpha+\varepsilon) \\
& \Rightarrow \quad\left(-c_{1}, c_{1}\right) \\
& \quad a_{n} \in(\alpha-\varepsilon, \alpha+\varepsilon) \\
& \Rightarrow a_{n} \in\left(-c_{1}, c_{1}\right) \\
& \Leftrightarrow\left|a_{n}\right|<c_{1}
\end{aligned}
$$

then $C=\max \left\{C_{1}, C_{2}\right\}$. Then $\left|\frac{1}{a_{n}}\right| \leqslant C \quad \forall n \in \mathbb{N}$.

Thy Let $a_{n} \rightarrow \alpha, \quad b_{n} \rightarrow \beta$. as $n \rightarrow \infty$.
(1) for any $k \in \mathbb{R}$.

$$
\lim _{n \rightarrow \infty}\left(k \cdot a_{n}\right)=k \cdot \lim _{n \rightarrow \infty}\left(a_{n}\right)=k \cdot \alpha .
$$

(2). $\quad \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\left(\lim a_{n}\right)+\left(\lim b_{n}\right)$
(3) $\quad \lim \left(a_{n} \cdot b_{n}\right)=\left(\lim a_{n}\right) \cdot\left(\lim b_{n}\right)$
(4) if $b_{n} \neq 0 \quad \forall n$. and $\beta \neq 0$. then

$$
\lim \left(\frac{a_{n}}{b_{n}}\right)=\frac{\lim a_{n}}{\lim b_{n}}
$$

if $k=0$, then nothing weed to be shown. limo $0=0$. Assume $k \neq 0$,
Pf: (1) $\forall \varepsilon>0$, the requirement

$$
\begin{aligned}
& \left|k \cdot a_{n}-k \alpha\right|<\varepsilon \\
\Leftrightarrow & \left|a_{n}-\alpha\right|<\varepsilon /|k| .
\end{aligned}
$$

Hence. $\exists N>0$. s.t. $\forall n>N . \quad\left|a_{n}-\alpha\right|<\varepsilon /|k|$.
(2). $\forall \varepsilon>0$, the requirement

$$
\begin{align*}
&\left|\left(a_{n}+b_{n}\right)-(\alpha+\beta)\right|<\varepsilon \tag{*}\\
& \Leftrightarrow\left|\left(a_{n}-\alpha\right)+\left(b_{n}-\beta\right)\right|<\varepsilon . \\
& \Leftrightarrow \quad\left|a_{n}-\alpha\right|+\left|b_{n}-\beta\right|<\varepsilon . \\
& \Leftrightarrow \quad\left|a_{n}-\alpha\right|<\frac{\varepsilon}{2}, \quad\left|b_{n}-\beta\right|<\frac{\varepsilon}{2} . \quad(* *)
\end{align*}
$$

we can find $N_{1}, N_{2}>0$, s.t. if $n>N_{1}$,
$\left|a_{n}-\alpha\right|<\frac{\varepsilon}{2}, \quad$ and if $n>N_{2}, \quad\left|b_{n}-\beta\right|<\frac{\varepsilon}{2}$.
Thus. take $N=\max \left(N_{1}, N_{2}\right)$, then if $n>N$, then $(* *)$ is satisfied, hence. ($*$) is satisfied.
(3). $\forall \varepsilon>0$, we need n be large enough, sit.

$$
\begin{aligned}
&\left|a_{n} b_{n}-\alpha \cdot \beta\right|<\varepsilon . \\
& a_{n}=\alpha+\left(a_{n}-\alpha\right), \quad b_{n}=\beta+\left(b_{n}-\beta\right) . \\
& a_{n} \cdot b_{n}= {\left[\alpha+\left(a_{n}-\alpha\right)\right]\left[\beta+\left(b_{n}-\beta\right)\right] } \\
&= \alpha \cdot \beta+\underbrace{\left(a_{n}-\alpha\right) \beta+}_{\text {fluctuation of the product }} \underbrace{\alpha \cdot\left(b_{n}-\beta\right)}_{\text {a } b_{n} .}+\left(a_{n}-\alpha\right)\left(b_{n}-\beta\right)
\end{aligned}
$$

For any $0<\delta<1$, $\exists N(\delta) \quad$ sit. $\quad \forall n>N(\delta)$

$$
\left|a_{n}-\alpha\right|<\delta, \quad\left|b_{n}-\beta\right|<\delta .
$$

Thus, $\forall n>N(\delta)$.

$$
\begin{aligned}
\left|a_{n} b_{n}-\alpha \beta\right| & \leqslant\left|a_{n}-\alpha\right| \cdot|\beta|+|\alpha| \cdot\left|b_{n}-\beta\right|+\left|a_{n}-\alpha\right| \cdot\left|b_{n}-\beta\right| \\
& \leqslant \delta \cdot|\beta|+|\alpha| \cdot \delta+\delta^{2} \\
& \leqslant \delta(1+|\alpha|+|\beta|) .
\end{aligned}
$$

- Hence, if we take $\delta_{0}=\min \left(\frac{\varepsilon}{1+|\alpha|+|\beta|}, 1\right)$. then.

$$
\delta_{0}(1+|\alpha|+|\beta|) \leqslant \varepsilon
$$

Thus, if we choose $N=N\left(S_{0}\right)$, then,

$$
\left|a_{n} b_{n}-\alpha \beta\right| \leqslant \delta(1+|\alpha|+|\beta|) \leq \varepsilon
$$

(4). Let's first prove that $\lim \frac{1}{b_{n}}=\frac{1}{\beta}$.
$\forall \Sigma>0$, we need to find $N>0$, sit $\forall n>N$, we have.

$$
\begin{aligned}
& \left|\frac{1}{b_{n}}-\frac{1}{\beta}\right|<\varepsilon \\
\Leftrightarrow & \left|\frac{\beta-b_{n}}{b_{n} \cdot \beta}\right|<\varepsilon
\end{aligned}
$$

$\because\left|\frac{1}{b_{n}}\right|$ is bounded, $\quad \therefore \exists C>0$. s.t. $\left|\frac{1}{b_{n}}\right|<C \quad \forall n$. thus.

$$
\begin{array}{ll}
\& & \left|\frac{\beta-b_{n}}{\beta}\right| \cdot C<\varepsilon . \\
\Leftrightarrow & \left|\beta-b_{n}\right|<\frac{\varepsilon}{C} \cdot|\beta| .
\end{array}
$$

So, $\exists N>0$, s.t. $\forall n>N, \quad(* *)$ is satisfied, hence.
(*) is satisfied.

