(Rudin Ch. on connectedness.)
Recall:

- a topological space: a set X, together with a collection of subsets of X, called open subsets. such that
- X, ϕ are open
- $\bigcup_{\alpha \in A} U_{\alpha}$ is open. A avibitrary index set., U_{α} open.

$$
\bigcap_{i=1}^{N} U_{i} \text { is open. (finite intersection). }
$$

- Given a top. space X, and $\operatorname{SC} X$, we endow S with the induced topology:
$u \subset S$ is open $V^{\text {ins }}$ iff $\exists \tilde{u} \subset X$, open in X, s.t.

$$
u=\tilde{u} \cap S
$$

Ex: $\quad X=\mathbb{R}, \quad S=\mathbb{Z} \subset \mathbb{R}$. with induced topology on S,
$\forall n \in \mathbb{Z},\{n\}$ is open in $S \quad$ if: $\quad \begin{aligned} & \{n\} \\ & \lambda \\ & u\end{aligned}=\underset{\tilde{u}^{\top} \text { opening } X .}{\left(n-\frac{1}{2}, n+\frac{1}{2}\right)} \cap S$
Ex: $\quad x=\mathbb{R}, \quad S=[0,1\rangle$. Then S is open in S.
S is not open in X.

Cor: (a) If $S \subset X$ is open in X, then $u \subset S$ is open in S iff U is open in X.
(b) If $S \subset X$ is closed in X, then $E \subset S$ is closed in S iff E is closed in X.
$\left[\begin{array}{cll}\text { Ex. } \cdot X=\mathbb{R}, & S=(0,1) . & U=\left(\frac{1}{3}, \frac{1}{2}\right) \subset S .\end{array} \quad U\right.$ is open in $\left.S.\right]$

Pf: (a) $U \subset S$ open in $S \Rightarrow U \subset S$ open ir X.
By def, $U=\tilde{u} \cap S$, for some $\tilde{u} \subset X$ open in X.
since \tilde{U} and S are both open in X, hence U is open in X.
\Leftarrow if U is open in X, then

$$
u=u \cap S
$$

Hence U is open in S.
(b) Similar.

Recall: A top. space X is connected if the only subsets of X that is both open and closed are X and ϕ. \downarrow disjoint union

- X is not connected iff $X=U \Perp V$
U.V are non-empty open subset - $f X$.

Def: Let X be a top. space. $E \subset X \overbrace{\text { subset with induced }}$ tandegy E is a connected subset iff E as a top. space is connoted.

Lemma : E is connected iff E cannot be written as $A \cup B$.

Cequivaleme of
definition with Rudin).
where $\bar{A} \cap B=\phi$, and $A \cap \bar{B}=\phi$. (there, closure are taken wort. ambient)
space X.

Pf: \Rightarrow Prove by contradiction. Suppose $E=A \cup B, \quad \bar{A} \cap B=\phi$. then. $\quad A=\bar{A} \cap E$, hence A is closed in E. $A \cap \bar{B}=\phi$,

$$
(\because \bar{A} \cap E=\bar{A} \cap(A \cup B)=(\bar{A} \cap A) \cup(\bar{A} \cup B)=A \cup \phi=A) .
$$

Similarly, B is closed in $E . \quad \because A=E \backslash B, \therefore A$ is also $\begin{aligned} & \text { open. }\end{aligned}$

- Hence, E is not connected. contradiction.
\nLeftarrow as exercise.
Rubin
Thu (2.47) $E \subset \mathbb{R}$ is connected
$\Leftrightarrow \forall x, y \in E, \quad x<y$. we have $[x, y] \subset E$.

Pf: \Rightarrow Prove by contradiction. Suppose $\exists x, y \in E, x<y$, such $[x, y] \notin E$. This means, $\exists z \in[x, y], \quad$ sit. $z \notin E$. Since $x, y \in E$. $z \in(x, y)$. Let $A=E \cap(-\infty, z)$. , $B=E \cap(z,+\infty)$.
Then, A, B are open in E. , and non-empty. $(x \in A, y \in B)$. and $E=A \Perp B$. Hence E is not connected. Contradiction!
\Leftarrow Prove by contradiction. Suppose $E=A \Perp B, \quad A, B$ nonempty, disjoint open subsets in E. Pick $x \in A$, and $y \in B$. WLOG, assume $x<y$. Then, by hynotherss, $[x, y] \subset E$.
Let $\widetilde{A}=[x, y] \cap A$,
$\widetilde{B}=[x, y] \cap B$.

Since A, B are both open and closed in E.
Hence $\widetilde{A}, \widetilde{B}$ are both open and closed in $[x, y]$.

Since $[x, y]$ is closed in $\mathbb{R}, \widetilde{A}, \widetilde{B}$ ave also closed in \mathbb{R}.

Let $z=\sup (\tilde{A})$. Since \tilde{A} is closed and bounded in \mathbb{R}, $z \in \widetilde{A}$. $z \neq y$, since $y \in \tilde{B}, \quad y \notin \tilde{A}$. Hence $(z, y] \subset \widetilde{B}$.
Since \widetilde{B} is closed, $\quad \therefore \quad \overline{(z, y]} \subset \tilde{B} \quad \therefore \quad z \in[z, y]=\overline{(z, y]} \subset \widetilde{B}$.
Thus. $z \in \widetilde{A}$ and $z \in \widetilde{B}$. contradiction with $\tilde{A} \cap \widetilde{B}=\phi$. \#.

Return to ch 4 . Continuous $f c n$ and connectedness.
Recall: If $f: X \rightarrow Y$ is cont, $E \subset X$ is connected. then $f(E)$ in Y is connected.

In the special case, $f: \mathbb{R} \rightarrow \mathbb{R}$ contimons.
The: If $f:[a, b] \rightarrow \mathbb{R}$ is cont. and if $f(a)<f(b)$. and c is such that $f(a)<c<f(b)$. Then $\exists x \in(a, b)$. set. $f(x)=c$.

Pf: - Since $[a, b] \subset \mathbb{R}$ is connected., we have $f([a, b]) \subset \mathbb{R}$ is connected.

- Since $f(a), f(b) \in f([a, b])$., hence by The 2.47.

$$
[f(a), f(b)] \subset f([a, b]) .
$$

In particular, if $c \in(f(a), f(b))$, then

$$
c \in f([a, b])
$$

Let $x \in[a, b]$, sit. $f(x)=c$. Then $x \neq a, b$. Hence $x \in(a, b)$.

Discontinuity for real valued functions:

Recall: $f: X \rightarrow Y$ is discontinuous at $x \in X$. if and only if x is a limit point of X., and $\lim _{q \rightarrow x} f(g)$ either doesn't exist or. does not equal to $f(x)$.

Def: Let $f: \quad(a, b) \rightarrow \mathbb{R}$. (not necessarily contionoms).

- $\forall x \in[a, b)$, we say $f\left(x_{+}\right)=q$. if for all seq $\left(t_{n}\right)$ in (x, b) that converge to x, we have limit $\quad \lim _{n} f\left(t_{n}\right)=q$.

- $\forall x \in(a, b]$, we say $f(x-)=q$. if for all sep $\left(t_{a}\right)$ in (a, x). converging to x. we leave

$$
\lim _{n \rightarrow \infty} f\left(t_{n}\right)=q
$$

Equivalently, one can use $\varepsilon-\delta$ language. For example,

$$
\begin{aligned}
& f(x+)=q \quad \text { iff } \quad \forall \varepsilon>0, \exists \delta>0 . \quad \text { s.t. } \quad \forall \quad t \in(x-\delta, x) \cap(a, b) \\
& |f(t)-q|<\varepsilon .
\end{aligned}
$$

- Say $f(x+)$: the right limit of f at x.

$$
f(x \rightarrow) \ldots \text { left }
$$

Def: Say $f:(a, b) \rightarrow \mathbb{R}$. $x_{0} \in(a, b)$. Suppose f is not continuous at x_{0}. (list kind discon...)

- we say f has simple discontinuity at x_{0}, if both $f\left(x_{0}+\right)$ and $f\left(x_{0}-\right)$ exists. (i.e. either $f\left(x_{0}\right) \neq f(x)$ or $\left.f\left(x_{0}\right) \neq f(x)\right)$.
- $\begin{aligned} & \text { Otherwise } \\ & \text { we say }\end{aligned} f$ has and kind of discontinuity.

Ex: (a). $f(x)=\left\{\begin{array}{rl}-1 & x<0 \\ 0 & x=0 \\ 1 & x>0\end{array}\right.$

discontinuity of 1 st kind (simple) discontimity.
$(b), \quad f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}$

- If $x_{0} \in \mathbb{Q}$, is $f(x)$ continuous at x_{0} ?

Has: Not continuous. Use $\varepsilon-\delta$ languge. $\exists \varepsilon \equiv$ say $\varepsilon=\frac{1}{2}$,
such $\forall \delta>0, \quad f\left(\left(x_{0}-\delta, x_{0}+\delta\right)\right)=\{0,1\} \& B_{\frac{1}{2}}\left(f\left(x_{0}\right)\right)=B_{\frac{1}{2}}(1)$
there are irrationals

$$
\text { in }\left(x_{0}-\delta, x_{0}+\delta\right) \text {. }
$$

$$
=\left(\frac{1}{2}, \frac{3}{2}\right) .
$$

We can also use seq def. to show f is not cont. at X_{0}.
Let x_{n} be a seq of irrational, converging to x_{0}. then $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f\left(\lim _{\substack{n \rightarrow \infty \\ n}} x_{n}\right)$, Hence, f is not cont.
(2). $f(x)= \begin{cases}x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} .\end{cases}$
(3) $f(x)= \begin{cases}\frac{1}{n} & x \in \mathbb{Q}, \quad x=\frac{m}{n},\left(\begin{array}{c}(m, n) \\ \text { coprime } \\ 0\end{array}\right. \\ x \in \mathbb{Q} .\end{cases}$

