Today : monotone functions (Rudin. Ch 4.5).
 sequence and convergence of functions. (Ross Ch 4) (Rudin Ch 7, 1, 2) (more generally, $f:(a,b) \rightarrow \mathbb{R}$). · Def: a function f: R→R is monotone increasing. if V x > y, we have f(x) 7 f(y). constant for Ex : 1 (similarly, one can define monotone decreasing). Thm: Suppose f: (a, b) -> R is a monotone increasing fon, then $\forall x \in (a, b)$, the left limit f(x-) and the right limit f(X+), exist, they satisfys: (1) $f(x-) = \sup \{f(t) \mid t < x \}$. $f(x+) = inf \{f(t) \mid t > x\}$ $f(x-) \leq f(x+)$. (2) Given x < y in (a,b), then. $f(x+) \leq f(y-).$ If f is monotone, then f(x) only has discontinuity of the first kind.

Prop: If f is monotone, there are at most countably many discontinuities. Pmk : without the monotone condition, we can have function $f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q} \end{cases}$ for is discontinuous $\forall x \in \mathbb{R}$. \mathbb{R} ίς an uncountable set. • If $d \in \mathbb{Q}$, then let $\chi_n \rightarrow d$ be a rational number seq. then $\lim_{n \to \infty} f(X_n) \neq f(\lim_{n \to \infty} X_n)$, so f is not cout. at · If dER, then let n in d be a seq of irretionals. then $\lim_{n \to \infty} f(X_n) \neq f(\lim_{n} X_n)$ $\begin{array}{rcl} \underline{Pf}: & \mathrm{if} & \mathrm{is} & \mathrm{a} & \mathrm{dis\, continuity} & \mathrm{of} & \mathrm{f}, & \mathrm{then.} & & \mathrm{orightarraw} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$ Associate to x a rational number 1x E (f(x->, f(x+)). Then for each x disc of f, we have $Y_X \in \mathbb{Q}$. If x < y, disc of f, then $r_x < f(x_+) \le f(y_-) < r_y$. hence rx. ry are distinct. the set of discontinuity of f. Then, we have an injective map from Disc(f) ~> Q. Hence Disc(f) is countable, since it can be indecidentified with a Loset of countable set. ______ infinite, but has bijection with N. subset of countrible set.

f(x+) = f(y-)× 3. y Y Construction of an example with countably many discon. let (Xn) be a seq of distinct points in (a,b). \mathbb{D} e.g. an enumeration of rationals. let Cu be a seq of positive numbers, such that (\mathbf{z}) $\sum C_n < \mathcal{P}$. (e.g. $C_n = \frac{1}{2^n}$). let $f(x) = \sum_{n \in N} C_n$, $x \in (a,b)$. One can check that, fire has discontinuity of exactly at $\frac{1}{2} \times \ln \varepsilon N^{2}$, $f(x_{n+}) - f(x_{n-}) = C_{n}$. $f(X_n) = f(X_{n-})$ f Cn ×.n. h · Sequence and Convergence. of function. · seq of real numbers, (Xn) new, Xn ER. we say Xn -> X, if HE>0, 3N>0, s.t. Hn>N, | Mn-X | < E.

seq of points $(\overline{\chi}_n)_n$, $\overline{\chi}_n \in \mathbb{R}^m$ $\hat{\chi}_3$ X₁ X₁ Euclidean xu= (Xn, , Xu,2, --Xnim) $(\tilde{X}_n) \rightarrow \tilde{X}$ in the metric sense of $\mathbb{R}^m \in \mathbb{R}^m$ $(X_{n,i}) \rightarrow X_i \qquad \forall i \in \{1, \dots, m\}. \qquad "convergence in each component"$ · seq of seq. : let each The denote a seq \mathcal{A} $\overline{\chi}_n = (\chi_{n1}, \chi_{n2}, \chi_{n3}, \dots) \in Map(N, \mathbb{R})$ R^N. a sep of see (Zn)n: $\overline{\chi}_{1} = (\chi_{11}, \chi_{12}, \chi_{13}, \dots)$ $\overline{\chi}_2 = (\chi_{21}, \chi_{22}, \chi_{23}, ---,)$ Several possibilities: $\overline{\chi} = (\chi_1, \chi_2, \dots)$ Define a "metric" on \mathbb{R}^N , $\overline{y} = ly_1, y_2, \dots$ in some $\longrightarrow d_2(\overline{x}, \overline{y}) = (\sum_{i=1}^{\infty} (x_i - y_i)^2)^{\frac{1}{2}}$. integral theory. userue in some tebesque integral theory. OV. $\longrightarrow d_{\mathcal{D}}(\bar{x}, \bar{y}) = \sup \{ |x_i - y_i| : i \in \mathbb{N} \}$ Sup distance $\left(\begin{array}{cc} = \lim_{p \neq \infty} \left(\sum_{i=1}^{\infty} |\chi_i - y_i|^p \right)^{\frac{1}{p}} \right)$ S used in Uniform convergence. is used in In this case, these different metrics are not "equivalent". Recall that, 2 metric functions d and d are equiv. if ZC>0, such that. UX.YEX. $\pm d(x,y) \leq d(x,y) \leq C \cdot d(x,y)$

Def.: (et
$$(\overline{\chi}_{n})_{n}$$
 be a seq. of sequences, $, \overline{\chi}_{n} \in \mathbb{R}^{N},$
we say $(\overline{\chi}_{n})_{n}$ converges to $\overline{\chi} \in \mathbb{R}^{N}$, [pointwise] if.
 $\forall i \in \mathbb{N}, we have$
 $\lim_{n \to \infty} \chi_{n,i} = \chi_{i}$
 $\overline{\chi}_{i} = \chi_{ii}, \chi_{i2}, \chi_{i3}, \chi_{i4}, ---$
 $\overline{\chi}_{2} = \chi_{2i}, \chi_{2i}, \chi_{2i}, \chi_{2i}, \chi_{2i}, ---$
 $\overline{\chi}_{3} = \chi_{3i}, \chi_{3i}, ---$
 \vdots
 χ_{ni}
 $\overline{\chi} = \chi_{i}, \chi_{2i}, \chi_{3i}, ---$

Def: Let
$$(\overline{X}_{h})$$
 be a seq of seq, $\overline{X}_{h} \in \mathbb{R}^{M}$.
We say $\overline{X}_{h} \rightarrow \overline{X}$, $\overline{uniformly}$, if
 $d_{\mathcal{P}}(\overline{X}_{h}, \overline{X}) \rightarrow 0$ as $n \rightarrow \infty$.
i.e. $\forall \varepsilon > 0$, $\varepsilon < \varepsilon$. $\forall n > N$,
 $\sup \{1 | X_{ni} - X_{i}| : i \in \mathbb{N}\}, < \varepsilon$.

$$E_X: X_{ni} = \frac{i}{n+i}$$

~

 $\frac{2}{6}, \frac{3}{7}$ -5 V linza $\lim_{h \to 0} \chi_{n_i} = \lim_{h \to \infty} \frac{i}{n + i} = 0$ for fixed i, Pointwise, Rin converges to D, pointwise. 56, ((0, 0, 0, ···) do (Xn, D) However. sup. { |Xnil : i EN } $\sup \left\{ \frac{i}{n+i} : i \in \mathbb{N} \right\}$ 2 · n is fixed in this set. s sup of a given 1. Ξ Yow not converge to D, uniformly. Xn do So, · Sequence of functions, Map (R, R). · Given two functions f, g : R - R., we define the "sup" distance. $d_{\infty}(f, g) = \sup \{ | f(x) - g(x) \} : x \in \mathbb{R} \}.$ $f_n: \mathbb{R} \rightarrow \mathbb{R}$ Given a sequence of functions $f_n \in M_{ap}(\mathbb{R}, \mathbb{R})$, we say f_n converges to f pointwise, if $\forall x \in \mathbb{R}$, $\lim_{n \to \infty} f_n(x) = f(x). \quad (\Leftrightarrow \quad \lim_{i \in \mathbb{N}} |f_n(x) - f(x)| = 0.)$ say fn converges to f uniformly, if we

 $\lim d_{\infty}(f_n, f) = 0.$ Example of Pointwise convergence.: • $f_n: [0, 1] \rightarrow \mathbb{R}$. $f_n(x) = x^n$. 1 f(x)=x $\lim_{n \to \infty} f_n(w) = \begin{cases} 0 & x \in [0,1] \\ 1 & x = 1 \end{cases}$ graph of the limit fixe. • (running humps) : (P(x) =)X E [o, 1] else where actually, any continuous function (Q(x), set. (p(x)=0 + x & [m1]. is ok. £, $f_n(x) = \varphi(x-n).$ fz $\lim_{n \to \varphi} f_n(x) = O_{-} = f_{(x)}$ Ψx, $\int_{\mathcal{D}} f_n(x) \, dx = C \qquad \forall n.$ $\neq \int_{B} f(x) dx = 0.$

· (shrinking bump): with the same CP, $f_n(x) = n \cdot \varphi(nx)$ Huen $\forall X \in \mathbb{R}$, $\lim_{n \to \infty} f_n(x) = 0 = : f(x)$