Unif convergence \bigcirc Today: unif convergence and continuity. Ð set Def: A sequence of four $f_n : X \to \mathbb{R}$, is said to converge uniformly to f: X -> Y, if YE70, JN >0, s.t. Un ZN, $\forall x \in X$, we have $\left| f_n(x) - f(x) \right| < \varepsilon.$ Compare with pointwise convergence $f_n(x) \rightarrow f(x)$, $\forall x$. HETO, HXEX, <u>ANXIE</u> TO. S.L. UNTNX, E., we have $\int_{A} (x) - f(x) \Big| < \varepsilon.$ $\frac{\text{Unif}}{\text{Thm}}: \left(\begin{array}{c} \text{Unif} \\ \text{Cauchy} \end{array} \right) \xrightarrow{\text{Unif}} \left(\begin{array}{c} \text{Convergence} \end{array} \right) \xrightarrow{\text{Suppose}} f_n: X \rightarrow \mathbb{R}. \text{ satisfies}. \end{array}$ that. YEZO, ZNDO, S.t. HN,MZN, YKEX. $\left| f_{n}(x) - f_{m}(x) \right| < \varepsilon$ Then fn converges uniformly. Pf: · " VXEX. the sep of numbers frith is a Cauchy seq, hence lim fuix exists. denote it as fix. We get $f: X \rightarrow Y$ as the pointwise limit. · Let 270 be given. Let N be given such that Hn, m>N, $|f_n(x) - f_n(x)| < \Sigma$ $\forall x \in X$.

Then, taking
$$m \rightarrow \infty$$
, since $f_{n}(\infty) \rightarrow f_{10}^{\infty}$, we have,

$$\lim_{M \to 0^{\infty}} |f_{n}(\omega) - f_{m}(\omega)| = |f_{n}(\omega) - f_{n}(\omega)|.$$
Hence, $|f_{n}(\omega) - f_{10}| \leq \varepsilon$. If
Hence, $|f_{n}(\omega) - f_{10}| \leq \varepsilon$. If
Rick: Unif Cauchy \leftarrow Unif Convergence, by triangle inequally
. Then: Suppose $f_{n} \rightarrow f$ pointwise, then.
 $\int_{n} f_{n} \rightarrow f$ uniformly \Leftrightarrow $\lim_{N \rightarrow \infty} \left(\sup_{x} |f_{n}(\omega) - f_{10} \rangle \right) = 0.$
. Then: (Weierstees M-tect). Suppose $f_{n}(\omega) = \sum_{n=1}^{\infty} f_{n}(\omega)$, $\forall x \in X$.
If $\exists M_{n} > 0$, $\exists t$ sup $|f_{n}(\omega)| \leq M_{n}$, and $\sum_{n} M_{n} < \infty$,
Then, the partial sum $F_{N}(\omega) = \sum_{n=1}^{N} f_{n}(\omega)$, converges to.
 $f(\omega)$ uniformly,
Pf: we only need to prove that $\{F_{N}\}$ forms a.
(wifform Cauchy sequence.
 $N < M.$
(g). $\sup_{M \to 0} |f_{n}(\omega)| = \sup_{M \to 0} |\sum_{n \in M} f_{n}(\omega)| \leq \sup_{x} |f_{n}(\omega)|$.

: since Z Mn is convergent, hence 4270, 3K, 20. s.t. $\forall N, M \supset K$. N < M. $\sum_{n=N+1}^{M} M_n < \varepsilon$, hence. sup |FN(x) - Fm(x) < 2 UN, M > K. ⇒ FN is unif caudry => FN converges uniformly. Unif convergence and continuity · Let X be a metric space, ECX. Let fn: E-Z. R. be a seg of R-valued for. (7.11) Ihm: Suppose fu ~ f uniformly on E in a metric Space X, x be a limit point of E., and suppose that. Let $\lim_{t \to \infty} f_n(t) = A_n.$ Then. the sequence An converges. Let A = lim An. \mathbb{O} $\lim_{t \to x} f(t) = A.$ ٤. Intuition: R. AS E x X

• Fix t_1, t_2, \cdots , $t_n \rightarrow \chi$. Consider a double

sequence

 $\rightarrow A_1$ $f_1(t_i), f_1(t_2), -- f_1$ \rightarrow Az fr $f_2(t_1)$ $f_2(t_2)$, --- $\rightarrow A_{3}$ f3(t1) f3(t2) - - (1) $\int_{\mathcal{S}}$ $f_n(t_m) - A_n$ unif Convergence, V V. W O $f(t_1)$, $f(t_2)$, $-\frac{f(t_m)}{5}$ $-\frac{1}{5}$ $\frac{1}{5}$ £. Pf: "Let 270 be given. By unif convergence of fn, JN >0, s.t. Hn, m >N., we have $(*) \qquad \qquad \left| f_n(t) - f_m(t) \right| < \varepsilon. \qquad \forall t \in X.$ Let $t \rightarrow x$ in. (*), (we fix nom in this limit), we have $\lim_{t \to \infty} |f_n(t) - f_m(t)| = |A_n - A_m|.$

 $\Rightarrow |A_n - A_m| \leq \varepsilon. , \quad \forall n, m. \forall N.$ This shows And is a Cauchy sequence, hence

convergent. Let A = lim An.

(a). $|f(t) - A| \leq |f(t) - f_n(t)| + |f_n(t) - A_n| + |A_n - A|$. (YTEE, NEN).

Then, we can choose a large enough, sit. $\left| f(t) - f_{\mu}(t) \right| < \frac{\varepsilon}{3} \qquad \qquad \forall t.$ This is possible by unif convergence., and also. $|A_n - A| < \frac{\varepsilon}{3}$ Now, for this fix n, since $\lim_{t \to x} |f_n(t) - A_n| = 0$,

there exists a S=0. s.t. HtEE, ord(t,x)<S, t*x E G we have $|f_n(t) - A_n| < \frac{\varepsilon}{3}$. Then, we have the following: given any 270, we found a \$>0. s,t. $\forall t \in E, t \neq X, O < d(t, \pi) < S,$ $\left| f(t) - A \right| \leqslant \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$ This shows. $\lim_{t \to x} f(t) = A.$ # Thm: Suppose &fn} is a seq. of continuous for on E, and fn -> f uniformly, then f is continuous. Pf: To show f is continuous, just need to show, YXEE'NE. limit point of E, in E, we have $\lim_{t \to \infty} f(t) = f(x).$.: fn is crt. $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{t \to \infty} f_n(t).$ Then. hyunif conv. lim lim $f_n(t) = \lim_{t \to x} f(t)$. $t \to x$ $n \to \infty$ $f_n(t) = \lim_{t \to x} f(t)$. Ħ. fn⇒f ptuise. Continuous. Q: if fn: K -> R, is defined on a compart subst KCX. and fulk) -> flos, HXEK. Do we have $f_n \rightarrow f$ uniformly (indep of xeK). <u>A</u>: . consider. Q(X): $\mathbb{R} \to \mathbb{R}$. a bump function supported on Io, 1], i.e. c((x) 7,0, _____, ce continues

 f_1 : ____ · let $f_n(x) = \varphi(nx)$. f_2 : h_1 -fs : _____ $\cdot \forall x \in [0,1], f_n(x) \rightarrow 0.$ So. In restricted on [0,1] converge ptwize to the 0- function. But. $\sup |f_n(x) - 0| = C = \sup |\varphi(x) - 0|$ XEIONIJ hence $\{f_n\}$ do not converge to D uniformly. Thm: Suppose K compact. and. (a). Sfuz is a seq of cont. for on K. (b). 3fr 3 converges pointwill to a <u>continuous</u> function fix on K. (c). $f_n(x) \gtrsim f_{n+1}(x)$. $\forall x \in K$, $\forall n = 1, 2, -\cdots$ Then, $f_n \rightarrow f$ uniformly on K. $\frac{Pf}{P}: \text{ let } g_n^{(N)} = f_n^{(N)} - f_n^{(N)}. \text{ Then. } g_n^{(N)} \to O, \text{ pturise},$ In (x) continuous, Jn (x) > Ju+1(x). We only need to prove. gn → O uniformly on K.

Let 270. be given. Let Kn. = {xEK | Jn(x). 7 23 (these are the bad set :-). $g_n(x) < \xi$. $\forall x \in K \iff K_n = \phi$. · Since In is continuous, Kn = In (EE, +10) is closed. · Since Kn CK is a closed set in a compart set, .: Kn is also compart. since $g_n(x) = g_{n+1}(x)$, $K_n \supset K_{n+1} \cdots$. For any $x \in K$, since $g_n(x) \rightarrow 0$, hence. $\chi \notin \bigcap K_n \Rightarrow \bigcap K_u = \oint. \varepsilon$ $\Rightarrow \exists N, s:t \cdot (\bigcap_{M=i} K_n = \phi) \Rightarrow K_N = \phi. K_{n.}$ a contradiction.

 $\forall n > N$, $\Im_n(x) < \varepsilon$. This shows. In-> O uniformly. #