· Continuous functions (from metric space to metric space) Follow Rudin Ch4. Ch7 uniform ronvergence. Recall : A function of from set A to set B. is an assignment. for each element & E A, an B element f(a) in B. f is injective (or one-to-one onto its image), if YX, YEA. $X \neq y$. then $f(x) \neq f(y)$ f: A → B · f is surjective, if VBEB, there exists at least one element $\alpha \in A$, s.t. $f(\alpha) = \beta$. $f: A \longrightarrow B$ f is bijective, if f is both injective and surjective. Given a subset ECB, f⁻(E) is a subset of A. $f'(E) = \{ \alpha \in A \mid f(\alpha) \in E \}$ В "pre-image" of E" · Let (X, dx), (Y, dy) be metric spaces Let $E \subset X$. $f: E \to Y$. · Recall E' is the set of limit points of E. E' = { x ∈ X | Hz>0, ∃ Y ∈ E, s.t. Y × x, d(y,x) < 5 }. = $\{x \in X \mid \forall z > 0, B_z^{(x)} \cap E \neq \phi\}$ T punctured open ball centered at x. · <u>Def</u> (limit of function). Suppose $P \in E'$. We write $f(x) \rightarrow q'$

as $x \rightarrow p$, or $\lim_{x \rightarrow p} f(x) = q$. if \$270. 3820, such that • $\forall x \in E$, $o < d_x(x, p) < S \Rightarrow$. $d_x(f(x), q) < Z$. Thm: with the same notation as above. The following are equivalent $\lim_{x \to p} f(x) = q$ (2) for any sequence of points in E convergent to P. (P_n) , $\lim_{n \to \infty} P_n = P$, we have $\lim_{n \to \infty} f(P_n) = q$. (Read Rudin thm 4.2) Covollang: if f has a limit at point P, then it is unique. $\underline{E} \times \hat{f} = R^2_{(k+0)} \rightarrow R$, $f(x,y) = \frac{y}{x}$, at $P = \{0,0\}$, f does not have a limit 1R2 1 {x = 0} <u>Rmk</u>: · E' is not necessarily contained in E. e.q. E = (b,1), E' = [0,1]. $E = \{ f_n, n \in N \}, E' = \{ n \}$ (4,4), <u>Thu</u>: Suppose we have $f, g: E \rightarrow \mathbb{R}$. Suppose $P \in E'$, and $\lim_{x \to p} f(x) = A$, $\lim_{x \to p} g(x) = B$, then $\lim_{x \to p} f(x) + g(x) = A + B$ (z) $\lim_{x \to p} f(x) g(x) = A \cdot B$ lim fix) / gw = A/B if B=0 and gw=0 UXEE. (ड)

XAP (4). $\forall C \in \mathbb{R}$, $\lim_{x \to p} C \cdot f(x) = C \cdot A$. Pf: Use the alternative definition of lim fix) using sez., we reduces these claims to corresponding claims for convergent sequence. #

Continuity of functions. Def (continuity at a point). Let (X,dx), (Y,dy) be metric spaces. and q=f(p). $E \subset X$. $f: E \rightarrow Y$. Let $P \in E$, We say f is continuous at p, if 4270, 3570, such, that $\forall x \in E, with d_x(x,p) < S, \Rightarrow d_y(f(x),q) < \varepsilon.$ [in other words, $f(B_s(p)) \subset B_z(q)$.] $Y = \mathbb{R}.$ $q. = \frac{1}{2} \cdot \frac{1}{2}$

Thm: If PEE is also a limit point of E, then f is continuous at p \Rightarrow $\lim_{x \to p} f(x) = f(p)$. Pf : Exercise. Bmk: () PEE can either be a limit or an isolated point. The condition of continuity is automatically satisfied for

isolated pt. Hence continuity condition is soonly conontrivial for limit point of E, inside E.

Def: We say f is continuous on E, if f is continuous at every point in E. (3rd definition of continuity). Thm: (X, d_X) , (Y, d_Y) , $f: X \to Y$ as above. Then f is continuous if and only if, for every openset $V \subset Y$, $f^{-1}(V)$ is open in X. (f is cont. if preimage of open is open) If: Suppose f is continuous. We need to show that, VVCY open, $f^{-1}(V)$ is open. We need to show, $\forall P \in f^{-1}(V)$, $\exists S > 0$, sit. $B_{S}(p) \subset f^{+}(V)$. Since $f(p) \in V$., and V is open, we have \$70, s.t. Br(fip) C V. By definition of continuity of fat p, we have a \$>0, s.t. $f(B_s(p)) \subset B_s(f(p))$ $\Leftrightarrow B_s(p) \subset f^{-1}(B_s(f(p)))$ $\leq f'(v)$

Suppose HVCY open, f⁻¹(V) is open. We need to check that UpEX, UZ20, 3.5. $f(B_s(p)) \subset B_s(f(p)) \Leftrightarrow B_s(p) \subset f^{-1}(B_s(f(p)))$ "Br(fcp) is open, we can take V = Br(fcp), and get f⁻¹ (B_E(fcps)) is open in X. Hence there exists § >0, s.t. $B_{s}(p) \subset f^{-1}(B_{\epsilon}(f(p)))$ Y χ

Acp. f⁻¹(B2H90) <u>Lemma</u>: if $f: A \rightarrow B$ is a function, and ECA, FCB. Then. $f(E) \subset F \Leftrightarrow E \subset f^{-1}(F)$. PF: f(E) C F ⇔ VxEE, f(x) E F $\forall \forall x \in E, x \in f^{-1}(F)$ \Leftrightarrow E C $f^{-1}(F)$ Thm: Let X, Y, Z be metric spaces, and. $f: X \rightarrow Y$, $g: Y \rightarrow Z$ continuous function. We define $h: X \rightarrow Z$, by h(x) = g(f(x)). We argue $rl \cdot a \cdot c$, rg $rd \cdot d$ Then h is also continuous. $(h = g \cdot f)$ "composition" <u>Pf</u>: $\forall V \subset Z$ open, we have $g^{-1}(V)$ is open in Y. and $f^{-1}(g^{-1}(V))$ is open in X, But, h'(Y) = f'(g'(V)), here h'(V) is open in X. /h-(7) f ร 9⁻¹(v)

Thm: If $f, g: X \rightarrow \mathbb{R}$ continuous. then f+g, f-g, f.g are continuous functions. and if $g(x) \neq 0$ for any $x \in X$, then f/g is continuous. <u>Pf</u>: We prove here f+q is a continuous function. For any PEX', a limit point X, we need to check that $f(p) + g(p) = \lim_{x \to p} (f(x) + g(x))$, this follows from. $\lim_{x \to p} f(x) = f(p) \quad and \quad \lim_{x \to p} g(x) = g(p) \quad and \quad Thun \quad 4.4 \quad (Pudin),$ EX: (1) X: R -> R is a continuous function. send a point to itself. (2). $\chi^2: \mathbb{R} \to \mathbb{R}$ is continuous. $\chi^2 = \chi \cdot \chi$. $\longrightarrow \chi^n : \mathbb{R} \to \mathbb{R}$ is continours. $\longrightarrow P(x) := a_n x^n + \cdots + a_n : \mathbb{R} \to \mathbb{R}$ is continuous. Thue: let $f: X \to \mathbb{R}^n$, with components of f. $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$ Then. f is continuous, if and only if each fi is continuous. Hint: f continuous ⇒ fi & s continus <u>Pf</u>: exercise. $f_i = \pi_i \circ f$ $Tt_i : \mathbb{R}^n \to \mathbb{R} \qquad i \in \{1, \dots, n\}.$ (X1,---, Xn) >> Xi Continuous