· Function between Metric Space. Rudin 34, 5.7. Recall: A function f: A -> B from a set A to a set B, is an assignment, to every aEA, an demet f(a) E B. (Source) · domain of f: A • range of $f: \mathfrak{F}(A) \subset B$. (target) · f is injective, if Ux, y EA, and x = y, then $f(x) \neq f(y)$ · f is surjective, if f(A) = B, i.e. V BEB, $\exists x \in A$, s.t. $f(x) = \beta_1$ · $\forall E \subset B$. Let $f'(E) = \{ A \in A \mid f(A) \in E \}$. Lemma: Let $A' \subset A$, $B' \subset B$, $f: A \rightarrow B$. then. $f(A') \subset B' \Leftrightarrow A' \subset f'(B')$ $pf: f(A') \subset B' \iff \forall x \in A', f(x) \in B'$ \Leftrightarrow $\forall x \in A', x \in f^{-1}(B')$ $\Leftrightarrow A' \subset f'(B').$ •. Let (X, dx) and (Y, dy) be metric spaces. Def: A function f: X -> Y is continuous at PEX, if Y270, IS70, such that

 $\forall x \in X$, with $d_x(x,p) < S \Rightarrow d_y(f(x), f(p)) < \varepsilon$. l'equivalent tre $f(B_{g}(p)) \subset B_{g}(f(p))$ X, Y as before. Ihm. A function f: X-> Y is continuous., HUCY open, f⁻¹(V) is open. Ymk: it only uses the notion of open sets, noworks for general topological spaces. Pf: => Suppose f is continuous, then we need to show $\forall V \subset \Upsilon$ open, $f^{-1}(V)$ is open. i.e. $\forall p \in f^{-1}(V)$, we need to show $\exists \delta > 0$, s.t. $B_{\delta}(p) \subset f^{-1}(V)$. Since f(p) EV, and V is open, we have 570, and $B_{\Sigma}(f(p)) \subset V$. By continuity of f, $\exists B_{S}(p)$, s.t. f(Bs(p)) C Br(f(p)). Hence $f(B_{s}(p)) \subset B_{\varepsilon}(f(p)) \subset V \Rightarrow B_{s}(p) \subset f'(V).$ Hence f'(V) is open.

 $(= If f^{-1}(V)$ is open for any $V \subset Y$ open, we need to show that UPEX, UZ20, IS20. s.t., $f(B_s(p)) \subset B_z(f(p))$, Since $B_z(f(p))$ is open. here f'(Bz(fcp)) is open, and contains P. By definition of open set. 3570. s.t. $B_s(p) \subset f^{-1}(B_s(f_{cp}))$ (\neq) f(B_s(p)) C B_z(f(p)). #

Def (limit of a function). Let X, Y be matriz spaces. Let ECX be a subset ((E,dx|E) is a meture space) and $f: E \to Y$. Suppose <u>P</u> is a limit of point of E, then we say $\lim_{x \to p} f(x) = q$, if there is a point $q \in Y$. such that #270, 2570, 5,t. $f(B_{s}^{x}(p) \cap E) \subset B_{s}(q).$ $B_{s}^{x}(p) = \{x \in X \mid x \in X \mid x$ x≠p, d(×,p) < s<u>}</u> i.e. HxEE, s.t. 0 < dx(x,p)<8, we have. $d_{\gamma}(f(x), q) < \Sigma$

Ruk: P is a limit point of E, if VS>0, B's(p) ∩E ≠ Ø

· E' is the set of limit points of E. $e_{f} E = (0, 1)$, E' = [0, 1]. $E = \frac{2}{h}, n \in \mathbb{N}^{3}, E' = \frac{2}{5}$ $E = E_{a}^{\text{isoluted}} \sqcup E'$

T { XEE | 3570, BE(X) NE = {x]}

Thm: with (X, Y, E, f) as above, $P \in E'$. We have $\lim_{x \to p} f(x) = q$. if and only if. $\forall any convergent seq. Pn \to p$ with $Pn \in E$., $Pn \neq p$. $\lim_{n \to \infty} f(p_n) = q_n$

$$Pf: \implies Suppose \lim_{x \to p} f(x) = q. And suppose p_n \to p, p_n \in E,$$
we need to show $\lim_{n \to \infty} f(p_n) = q.$ For any $\varepsilon > 0$, we need
to have an $N > 0.$ s.t. $\forall n > N.$ $d(f(p_n), q_n) < \varepsilon.$ By
definition of a limit of function, $\exists \delta > 0$, s.t. if
 $d_x(p_n, p) < \delta$, then. $d(f(p_n), q) < \varepsilon.$ By $p_n \Rightarrow p, \exists N > 0$,
s.t. $\forall n > N, d(p_n, p) < \delta$. Hence, in summary, $\varpi \exists N > 0.$
s.t. $\forall n > N, d(p_n, p) < \delta \Rightarrow d(f(p_n), q) < \varepsilon.$

$$\not\leftarrow$$
 Suppose. $\lim_{x \to p} f(x) \neq q$, that means. $\exists e > 0$, s.t. $\forall s > 0$,

$$f(B_{S}^{x}(p) \cap E)$$
 is not contained in $B_{E}(q)$.

i.e.
$$\exists x \in E$$
, s.t. $o < d_x(x,p) < S$, s.t.
 $d(f(x), q) > \varepsilon$.

Let S take values
$$\overline{h}$$
, for $n \in \mathbb{N}$, and one obtain a
sequence of pts Xn , s.t. $0 < d(Xn, p) < \overline{h}$, and
 $d(f(Xn), q) > \varepsilon$. This

contradict with the statement that for all seq $X_{u} \rightarrow P, \quad X_{u} \neq P, \quad , \qquad f(x_{u}) \rightarrow q.$ #

To show statements $P \rightleftharpoons Q$, we show $P \Rightarrow Q$ and !P => !Q (Pis not thue and !P => !Q (Pis not thue f+g : X→R (f*g)(*):= f(x)+g(x). (4,4), Thm: Let f, g: X -> R. And assume that $\lim_{x \to p} f(x) = A, \qquad \lim_{x \to p} g(x) = B.$ $\lim_{x \to p} (f + g)(x) = A + B$ Then in $\lim (f \cdot g)(x) = A \cdot B$ (Z) Х⇒Р if B≠0, Z(X) ×0 V×EX, then (3) $\lim_{x \to p} (f/g)(x) = A/B.$ Pf: Using the comes ponding result about sequences. #. (3rd def of continuity) and only if Thus: $f: X \to Y$. f is continuous, if for any. $p \in X'$, a limit pt of X, we have $f(p) = \lim_{x \to p} f(x)$ $(i \cdot e, f(\lim_{x \to p} x) = \lim_{x \to p} f(x),$

Operations on Continuous Functions. <u>Thus</u>: Let $f, q: X \rightarrow \mathbb{R}$ be continuous functions, then f+g, f.g, f/g (ifg=0) are continuous functions. Pf: To show ftg is continuous, just need to show $\forall p \in \chi',$ ∀ p∈X, lim f(x) + g(x) =. f(p) + g(p). x→p. This follows from The 4.4, above. ----†_____ Ihm: if f: X->Y, g: Y->Z are continuous then $(g \cdot f) : X \rightarrow Z$ is continuous. $(g \circ f)(x) = g(f(x))$ is the composition of f.g Pf: Just need to show that, UCZ open. $(g,f)^{-1}(V)$ is open. But. $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is open.# open : q cont. Fastel 1 If X, Y are topological space, XXY is a topological space, with open sets then

"generated" by UXY, UCX open, VCY open. $using \cup, \cap, \cdots$ Given a maps $f: Z \rightarrow X, g: Z \rightarrow Y.$ $(f,g): Z \rightarrow X \times Y.$ (f,j)(z) = (f(z), g(z)).(f,g) is continuous if and only if, f and g. are continuous. <u>Thm</u>; let $f: X \rightarrow \mathbb{R}^n$., with $f(x) = (f_1(x), \cdots, f_n(x))$. Then f is continuous \$ fi: X > R are continuous ₩ ù =1, ..., n. Pf: See Rudin, (identify) is continuous. <u>Ex</u>: (1), $\chi: \mathbb{R} \rightarrow \mathbb{R}$: multiplication of cont.fen $\cdot \chi^2 : \mathbb{R} \rightarrow \mathbb{R}$ is cont. $\Rightarrow \chi^{n} : R \rightarrow R \qquad \text{cont}.$ $\Rightarrow P(x) = Q_{n} x^{n} + \dots + Q_{o} : |\mathbb{R}^{n} \to \mathbb{R} \quad is continuous.$ polynomial T(F: u) if $f: X \rightarrow Y$ is continuous, then HUCX open, f(u) is also upen in T. X false. $f(x) = x^2$: $R \rightarrow R$ f((-1,1)) = [0,1)

(27).	if f: X > Y cont. Then YECY closed,
	ft(E) is closed.
True:	E is dosed in E is open.
	$Y = E \square E^{-}$ $f'(E) f'(E)$
	$f'(Y) = f'(E) \sqcup f'(E') \times (f'(E'))$
	$f^{-1}(Y) = X$
	$\Rightarrow \chi = f^{-1}(E) \sqcup f^{-1}(E^c) \qquad \qquad$
	hence f ⁻¹ (E) is closed.
P Ex:	$f: \mathbb{R} \to \mathbb{R}$
	$f^{-1}((-z,z)) = (-z,o]$