0,	Review
----	--------

· Metric space (X, d)
 Topology of a metric space. (X, d) st. vadius = S. st. center = p.
UCX is open. if UPEU, 3820. Bocp CU.
· Compact subset
<u>Def</u> KCX is compact, if V open cover of K.
Z a finite subcover.
Prop: K compact => K bounded.
K compact > K is closed.
ECX clused, K compart, ECK => E is also
V metric space,
<u>Thm 1</u> : Compactness A sequential compactness.
K compact ⇐) ∀ sequence (Xn) in K, ∃ X E K,
and a subseq (Xnk)k. such.
$\chi_{n_k} \rightarrow \chi$
(Heine-Brenel). ⇒
Thind: In \mathbb{R}^n , K compact \Leftrightarrow K closed and bounded.
Rudin Thm 2.41
Continuous Map: Let (X, dx), (Y, dy) be metric spaces.
$f: X \rightarrow Y.$
Def1: f is cont. iff YPEX, YZZO, 3570, s.t.
$f(B_{s}(p)) \subset B_{z}(f(p))$

Defa: f is cont. iff $\forall V \subset Y$ open, $f^{-1}(V)$ is <u>Def3</u>: f is cart. iff $\forall \chi_n \rightarrow \chi$ in χ , we have $f(x_n) \rightarrow f(x)$ in Υ . Rink: O The notion of "open" and " closed" depends on the ambiant space., the notion of "compact" is intrinsic. $d_x : x \times x \to R$ Let (X, dx) be a metric space. Let SCX. Then (S, dx) is also a metric space. A subset VCS, If V is open in S, V may not be open in X. $E_{X}: X = \mathbb{R}, \qquad S = (0, 1).$ (onsider E = (0,1) CS.Then: • E is open in S · E is closed in S E ts open in X ' E is not closed in X. But E is not closed in X. · X=R, S= 202 2 metric spaces. · E = 203. Then " E is open and closed in S is closed in X, * E , E is not open in X.

Ex: (X, d) metric space. SCX, (S, d) metric Space with induced metric. · KCX is compact, KCS. \Rightarrow K is also compact as a subset of S. F: VUCS open in S, EUCX, open in X, s.t. L L= SAŨ. Hence if KCUUX, Ux open in S. they we promute each Ux to an open subset Ux CX. s.t. Ux = Ũx AS. Then. KCVŰK. · K is compact in X. .: = id1, --, dn } finite index Subset. s.t. $K \subset \tilde{\mathcal{U}}_{\alpha_1} \cup \tilde{\mathcal{U}}_{\alpha_2} \cup \cdots \cup \tilde{\mathcal{U}}_{\alpha_n}$ intersect both sides with S =>. K C Ux, U Ux U --- U Ux. Hence K is compact subset in S. (we can take S=K.). 2. (X, dx), (Y, dy), metros span $f: X \rightarrow Y$ Assume: X is a compart metriz space, EX: " X = [0,1], (with the induced metric from IR) X is compact.

Tremark: KCR, K is compact, then. $\sup(K) \in K$. $\inf(K) \in K$. Hence max(K), min(K) exist, equils to sup Rinf, If $f: X \rightarrow Y$ is cont., f send compart set in XRmk : * to compact set in Y. But, given ECY compact f⁻¹(E) is not guaranteed to be compact. f" (compact) is may not be compact. $f^{-1}([0,1]) = [1,0^{\circ}).$ Q: is [1,10) closed ? Vixes. ⇒ is the complement (-vo, 1) open ? / yes. $\forall p \in (-P, 1), \exists B_s(p) \subset (-P, 1), \exists (-P, 1) is$ f (open) is open f continuous (=) f⁻¹ (closed) is closed. \Leftrightarrow $(2): f: (0,1) \longrightarrow \mathbb{R} \quad \text{inclusion map.} \quad (\text{ continuous}).$ х. $\chi \mapsto$ is this a compact set? $f^{-1}\left(\left[\frac{1}{2},\frac{3}{2}\right]\right) = \left[\frac{1}{2},1\right)$ closed & bounded, subset of

(X, d) metric space. SCX., with induced metric. ι S \rightarrow X Is the inclusion map continuous? Tes. ∀PES, ∀Z>O, we set S=E. indeed. $l(B_{\epsilon}^{(s)}(p)) \subseteq B_{\epsilon}^{(x)}(\iota(p))$. $B_{\varepsilon}^{(S)}(p) = \xi \times \epsilon S \left[d(x,p) < \varepsilon \right]$ $d_X = d_S = d$ $\mathbb{B}_{z}^{(X)}(\iota_{p}) = \{ X \in X \mid d(X,p) < z \}$ l(p) = p. $\iota(B_{\varepsilon}^{(S)}c_{\varepsilon}) \subset B_{\varepsilon}^{(X)}(\iota_{\varepsilon}).$ (?) $(0, \frac{1}{2})$, is it open in (0, 1)Q: VxE (0,2), 350, open set in (0,1).: $B_{2}^{(S)}(x) = \{y \in S \mid d(y, x) < z \}.$ $\zeta = \frac{1}{2} \min \left(X_{j} \right)$ e.g. $B_{\pm}^{(S)} = \frac{5}{4} = \frac{5}{4} = \frac{5}{4} = \frac{1}{4} = \frac{1}{$ $= (0, \frac{1}{5})$ (X, d) metric space, SCX open subset. · UCS is an open subset in S. iff U is an open subsit in X. Ex: open cover of (0,1). $(0,1) = (0,\frac{1}{2}) \cup (\frac{1}{3},\frac{2}{3}) \cup (\frac{1}{2},1)$ • $(\Box_{1}) = (\begin{array}{c} \Box_{2n} (\Box_{n}) \\ \Box_{2n} (\Box_{n}) \end{array}) \quad \cup (\begin{array}{c} \Box_{2n} (\Box_{n}) \\ \Box_{2n} (\Box_{n}) \end{array})$

