· Continuous functions. Definitions. f: X→Y. · 1. 2-8 Language: YPEX, HE>0, 3870, S.t. $\forall x \in X, \quad d(x,p) < \delta \Rightarrow \quad d(f(x), f(p)) < \varepsilon.$ (this constant & depende on z, and p). · 2. "open set, topological style": VVCY, open, f-'(V) is open. · 3. " convergent sequences": \forall convergent seq $\chi_n \rightarrow \chi$., we have $f(x_m) \rightarrow f(x)$. in T · Def: f: X->Y. for between metric spaces. Suppose for all 270, 350, s.t. V $p, q \in X$, with $d_X(p,q) < S$, we have $d_Y(f_{ip}), f_{ip}) < \varepsilon$. Then, we say of is a uniform continuous function. f(x). <u>Χ.</u>Υ $E_X: (n. f(x) = x^2, \mathbb{R} \to \mathbb{R}.$ $f'(x) = 2\pi$, $|f'(x)| \rightarrow 00$ as $|x| \rightarrow 0^{\circ}$. $df(x) = 2x \cdot dx$ Aus: not uniformly continuous. US>0, & I claim, I p.q.E.R. [p-q] < 8. s.t. [fcp) - f(q)] > [. $|f_{(p)} - f_{(q)}| = |p^2 - q^2| = |(p - q)(p + q)|.$ we take $P-q = \frac{s}{2}$, $P+q = \frac{2}{5} \Rightarrow sdue fagt p.q.$ then |f(p) - f(p)| = 1.Intuition: if both p,q are large,

then, even though (P-Z) is small. (p2-22) can still be lane (2) $f(x) = \chi^2$, $[0, 1] \rightarrow \mathbb{R}$. Indeed, this is uniformly continuous. $\forall 2>0$, we can take $S=\frac{2}{2}$, then ¥ p,q E[0,1], [p-q] < 8. we have $|p^2 - q^2| = |(p - q) \cdot (p + q)| = |p - q| \cdot |p + q| < \delta \cdot 2 = \delta$ between Thm: Suppose f: X -> Y is a cont. for, an metric spaces. If X is compact, then f is uniformly continuous. Pf#1: (using sequential compactness). Suppose f is not uniformly cont., then ZETO, S.t. VSTO, JP, JEX, dx(p,q)< 8, sit. dy(fq), f(q)) > 2. Hence, if we take S= n, for all nEN, we can get a seq. Pn, In EX. s.t. $d_X(p_n, q_n) < S$, and $d_Y(f(p_n), f(q_n)) > E$. Seq, Using compactness of X, apply to the seq (Pn), we get a convergent subseq. (Pnk)k., say the limit is p. Then $(9n_k)_k$ also converge to P. $d_{\gamma}(f_{c}p_{n_{k}}), f_{\gamma}(\gamma_{n_{k}})) > \varepsilon$ This contradicts, with. ₩**1**00k. #.

Pf#2 (using the open cover defin of compactness). Given 270. Let 2'= 2/2. Then, for each PEX, $\exists S(p) > 0$, s.t. $f(B_{S(p)}(p)) \subset B_{\varepsilon'}(f(p))$. Then, we have an open cover of X, $\chi = \bigcup_{\substack{p \in X}} B_{s(p)/2}(p),$ (= B<u>sep</u> (). Bsin (p) By compactness of X, we have a finite subset ACX, sit. $\chi = \bigcup_{p \in A} \mathcal{B}_{\underline{xp}}(p).$ Let $S = \min \left\{ \frac{\delta(p)}{2} \mid p \in A_{3}^{2} \right\}$. Claim, $\forall x, \beta \in X$, s.t. $d_X(\alpha,\beta) < \delta$, we have $d_Y(f(\alpha), f(\beta)) < \varepsilon$. pf of daim: $\therefore X \in X$, $\therefore \exists p \in A$, s.t. $A \in B_{\underline{Scp}}(p)$. $d(\beta,p) < d(\beta,\alpha) + d(\alpha,p) < \delta + \frac{\delta(p)}{2} < \frac{\delta(p)}{2} + \frac{\delta(p)}{2} = \delta(p).$ $:= \beta \in B_{SGP}(P)$. Now, $\alpha, \beta \in B_{SCP}(P)$. $\Rightarrow d(f(\omega), f(p)) < \varepsilon', \qquad d(f(p), f(p)) < \varepsilon'.$ d(f(x)), f(p)) < 2' = 2∋ Prop: If f: X >> Y is uniformly continuous, and SCX subset, with induced metroz, then. fle fls: S > Y is uniformly continuous. restriction #

X or ϕ . $E_{X}: X = [0, 1] \cup [2, 3].$ X is not connected, because [0,1] C X is both open and closed. subset of X. to show [0,1] is open, just need. $[o,1] = \bigcup_{p \in [o,1]} B_{\frac{1}{2}}^{(\chi)}(p) \qquad B_{\gamma}^{\chi}(p) = \{q \in \chi \mid d(q,\gamma) < r\}$ [0,1] is a union of open sets. heave is open. Prop: X is connected \Rightarrow If $X = U \parallel V$, and U and Y are both open, then one of U.V is empty set. For $U, V \subset X$, if $U \cap V = \phi$, then we write. UUV as UUV, say it is the disjoint union. pf ⇒ If X conna, and X = UIIV, U.V upen. then $\mathcal{U}^{c} = V$ which is open, hence \mathcal{U} is both open and closed, hence. U= X or to Thm: If $f: X \to Y$ is continuous, if $E \subset X$ is connected, then f(E) is connected.

Pf: let $h = f|_E$, and consider $h: E \rightarrow f(E)$. If f(E) is not connected, then ZU, V open in f(E), st. UNV=\$, f(E) = UIIV. Consider. preimage of h. $E = h'(u) \perp h'(v)$ E is a union of non-empty open subsets (of E). hence E is not connected. # Recall, induced topology on a subset SCX. An usubset UCS is open in S if and only if, JUCX open in X. such that u= ũns · Apply it to functions : f: R-R. Prop: [0,1] CR is a connected subset. We prove by contradiction. Pf: Say [0,1] = AHB, A, B are non-empty. open subsets in [0,1], i.e. IA, BCR open. sit. $A = \tilde{A} \cap [0, 1], \quad B = \tilde{B} \cap [0, 1].$ If A, B are open in Eo, 1], then $A = [0, 1] \setminus B$ $B = [0, 1] \setminus B$. then A, B are also closed in [0,1]. "[[01]] is compart, and closed subset of compart space is compart : A, B are compact.

 $\sup(A) \in A$, $\inf(A) \in A$. $\sup(B) \in B$. $\inf(B) \in B$. (next time, finish the proof. Goal: try to find a point. that's the limit point of both A and B.) # $sup(A) \neq sup(B)$, say sup(B) < sup(A), then I PaEA, Pu > Sup(B), Pu -> Sup(B). that : lim pu exists, i. lim pu EA by closedness FA. ∴ sup(B) ∈ A.