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BASIC TOPOLOGY

FINITE, COUNTABLE, AND UNCOUNTABLE SETS

We begin this section with a definition of the function concept.

2.1 Definition Consider two sets 4 and B, whose elements may be any objects
whatsoever, and suppose that with each element x of A4 there is associated, in
some manner, an element of B, which we denote by f(x). Then fis said to be a
Sunction from A to B (or a mapping of A into B). The set A is called the domain
of f (we also say fis defined on A4), and the elements f(x) are called the values
of f. The set of all values of f'is called the range of f.

2.2 Definition Let 4 and B be two sets and let f be a mapping of 4 into B.
If Ec A, f(E) is defined to be the set of all elements f(x), for x € E. We call
f(E) the image of E under f. In this notation, f(4) is the range of £. It is clear
that f(4) < B. If f(4) = B, we say that f maps 4 onto B. (Note that, according
to this usage, onto is more specific than into.)

If E < B, f~!(E) denotes the set of all x € A4 such that f(x) e E. We call
f~! (E) the inverse image of E under f. If ye B, f~'(y) is the set of all xe 4
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such that f(x) =y. If, for each y e B, f ~!(y) consists of at most one element
of A4, then f is said to be a 1-1 (one-to-one) mapping of 4 into B. This may
also be expressed as follows: f is a 1-1 mapping of 4 into B provided that
f(xy) # f(x;) whenever x; # x,, X, € 4, x, €A.

(The notation x; # x, means that x, and x, are distinct elements; other-
wise we write x; = x,.)

2.3 Definition If there exists a 1-1 mapping of A onto B, we say that 4 and B
can be putin 1-1 correspondence, or that 4 and B have the same cardinal number,
or, briefly, that 4 and B are equivalent, and we write A ~ B. This relation
clearly has the following properties:

It is reflexive: A ~ A.
It is symmetric: If A ~ B, then B~ A.
It is transitive: If A ~ Band B~ C, then 4 ~ C.

Any relation with these three properties is called an equivalence relation.

2.4 Definition For any positive integer n, let J, be the set whose elements are
the integers 1, 2, ..., n; let J be the set consisting of all positive integers. For any
set A, we say:

(a) A is finite if A ~ J, for some n (the empty set is also considered to be
finite).

(b) A is infinite if A is not finite.

(c) A is countable if A ~J.

(d) A is uncountable if A is neither finite nor countable.

(e) A is at most countable if A is finite or countable.

Countable sets are sometimes called enumerable, or denumerable.

For two finite sets 4 and B, we evidently have 4 ~ B if and only if 4 and
B contain the same number of elements. For infinite sets, however, the idea of
“having the same number of elements’” becomes quite vague, whereas the notion
of 1-1 correspondence retains its clarity.

2.5 Example Let A be the set of all integers. Then A is countable. For,
consider the following arrangement of the sets 4 and J:

,2,—2,3 -3,...
3,6, Tyzormio
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We can, in this example, even give an explicit formula for a function f
from J to 4 which sets up a 1-1 correspondence:

n

3 (n even),

foy=1"
1-”—2- (n 0dd).

2.6 Remark A finite set cannot be equivalent to one of its proper subsets.
That this is, however, possible for infinite sets, is shown by Example 2.5, in
which J is a proper subset of A.

In fact, we could replace Definition 2.4(b) by the statement: A is infinite if
A is equivalent to one of its proper subsets.

2.7 Definition By a sequence, we mean a function f defined on the set J of all
positive integers. If f(n) = x,, for n € J, it is customary to denote the sequence
S by the symbol {x,}, or sometimes by x,, x,, x3,.... The values of f, that is,
the elements x,, are called the rerms of the sequence. If 4 is a set and if x, € 4
for all n € J, then {x,} is said to be a sequence in A, or a sequence of elements of A.

Note that the terms x,, x,, x3, ... of a sequence need not be distinct.

Since every countable set is the range of a 1-1 function defined on J, we
may regard every countable set as the range of a sequence of distinct terms.
Speaking more loosely, we may say that the elements of any countable set can
be ““‘arranged in a sequence.”

Sometimes it is convenient to replace J in this definition by the set of all
nonnegative integers, i.e., to start with 0 rather than with 1.

2.8 Theorem Every infinite subset of a countable set A is countable.

Proof Suppose E < A4, and E is infinite. Arrange the elements x of 4 in
a sequence {x,} of distinct elements. Construct a sequence {n,} as follows:

Let n, be the smallest positive integer such that x, € E. Having
chosen ny,...,m_; (k=2,3,4,...), let n, be the smallest integer greater
than n,_, such that x, e E.

Putting f(k) = x,, (k =1,2,3,...), we obtain a 1-1 correspondence
between E and J.

The theorem shows that, roughly speaking, countable sets represent
the “smallest’” infinity: No uncountable set can be a subset of a countable
set.

2.9 Definition Let 4 and Q be sets, and suppose that with each element « of
A there is associated a subset of Q which we denote by £,.
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The set whose elements are the sets E, will be denoted by {E,}. Instead
of speaking of sets of sets, we shall sometimes speak of a collection of sets, or
a family of sets.

The union of the sets E, is defined to be the set S such that x € S if and only
if x € E, for at least one « € 4. We use the notation
¢)) S=J)E,.

ae A

If A consists of the integers 1, 2, ..., n, one usually writes

)] §=|)E,
me=1
or
3) S=E,VE,u-+VE,.
If A is the set of all positive integers, the usual notation is
«©
@ S= | ) E,.
m= 1

The symbol oo in (4) merely indicates that the union of a countable col-
lection of sets is taken, and should not be confused with the symbols + 00, — 0,
introduced in Definition 1.23.

The intersection of the sets E, is defined to be the set P such that x € P if
and only if x € E, for every « € A. We use the notation

(5) P=nE¢,
aeA
or
6) P=ﬁE,=E1nEzn---nE,,
m=1
or
™ P= () En,
m=1

as for unions. If 4 n B is not empty, we say that 4 and B intersect; otherwise
they are disjoint.

2.10 Examples

(a) Suppose E; consists of 1,2,3 and E, consists of 2,3,4. Then
E, v E, consists of 1, 2, 3, 4, whereas E; n E, consists of 2, 3.
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(b) Let A be the set of real numbers x such that 0 < x < 1. For every
x € A, let E, be the set of real numbers y such that 0 <y < x. Then

@ E.cE,ifandonlyif 0<x<z<1;
(ii) U E. =E;;

x€A
(iii) () E, is empty;

xed

(i) and (ii) are clear. To prove (iii), we note that for every y >0, y ¢ E,
if x<y. Henceyé¢(\icu Ex-

2.11 Remarks Many properties of unions and intersections are quite similar
to those of sums and products; in fact, the words sum and product were some-
times used in this connection, and the symbols £ and IT were written in place

of | ) and .

The commutative and associative laws are trivial:

® AuB=BUA,; AnB=BnA.
©) (AuB)uC=4AuV(BU (), ANnBNnC=An(BnC).

Thus the omission of parentheses in (3) and (6) is justified.
The distributive law also holds:

(10) AnBUC)=AnB)uUAnC).

To prove this, let the left and right members of (10) be denoted by E and F,
respectively.

Suppose x€ E. Then xe 4 and x€ By C, that is, x € B or x € C (pos-
sibly both). Hence xe A n Bor x€ A n C, so that xe F. Thus Ec F.

Next, suppose x€ F. Thenxe An Bor xe An C. Thatis, xe€ A, and
xeBuUC. Hence xe A n (Bu C),sothat Fc E.

It follows that E = F.

We list a few more relations which are easily verified:

(11) Ac AV B,

(12) AnBcA.

If 0 denotes the empty set, then

(13) Au0=4, An0=0.
If A < B, then

(14) Avu B=B, AnB=A.
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2.12 Theorem Let{E,},n=1,2,3,...,beasequence of countable sets, and put

(15) s={)E,.

n=1

Then S is countable.

Proof Let every set E, be arranged in a sequence {x,},k =1,2,3,...,
and consider the infinite array

(16)

in which the elements of E, form the nth row. The array contains all
elements of S. As indicated by the arrows, these elements can be
arranged in a sequence

(17) Xy1s X215 X125 X310 X225 X135 X415 X325 X235 X145+

If any two of the sets E, have elements in common, these will appear more
than once in (17). Hence there is a subset T of the set of all positive
integers such that S~ 7, which shows that S is at most countable
(Theorem 2.8). Since E, = S, and E| is infinite, S is infinite, and thus
countable.

Corollary Suppose A is at most countable, and, for every o.€ A, B, is at most

countable. Put
T= U B,.

ac A
Then T is at most countable.

For T is equivalent to a subset of (15).

2.13 Theorem Let A be a countable set, and let B, be the set of all n-tuples
(ay,...,a,), wherea,e A (k =1, ..., n), and the elements a,, ..., a, need not be
distinct. Then B, is countable.

Proof That B, is countable is evident, since B, = A. Suppose B,_, is
countable (n =2, 3,4, ...). The elements of B, are of the form

(18) (b, a) (beB,-,,ac A).

For every fixed b, the set of pairs (b, a) is equivalent to A, and hence
countable. Thus B, is the union of a countable set of countable sets. By
Theorem 2.12, B, is countable.

The theorem follows by induction.
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Corollary The set of all rational numbers is countable.

Proof We apply Theorem 2.13, with n = 2, noting that every rational r
is of the form b/a, where @ and b are integers. The set of pairs (a, b), and
therefore the set of fractions b/a, is countable.

In fact, even the set of all algebraic numbers is countable (see Exer-
cise 2).

That not all infinite sets are, however, countable, is shown by the next
theorem.

2.14 Theorem Let A be the set of all sequences whose elements are the digits 0
and 1. This set A is uncountable.
The elements of 4 are sequences like 1,0,0,1,0,1,1,1,....

Proof Let E be a countable subset of 4, and let E consist of the se-
quences 8y, 53, 53, .... We construct a sequence s as follows. If the nth
digit in s, is 1, we let the nth digit of s be 0, and vice versa. Then the
sequence s differs from every member of E in at least one place; hence
s ¢ E. But clearly s € 4, so that E is a proper subset of 4.

We have shown that every countable subset of 4 is a proper subset
of 4. It follows that A is uncountable (for otherwise 4 would be a proper
subset of A, which is absurd).

The idea of the above proof was first used by Cantor, and is called Cantor’s
diagonal process; for, if the sequences sy, s, , 53, ... are placed in an array like
(16), it is the elements on the diagonal which are involved in the construction of
the new sequence.

Readers who are familiar with the binary representation of the real
numbers (base 2 instead of 10) will notice that Theorem 2.14 implies that the
set of all real numbers is uncountable. We shall give a second proof of this
fact in Theorem 2.43.

METRIC SPACES
2.15 Definition A set X, whose elements we shall call points, is said to be a

metric space if with any two points p and ¢ of X there is associated a real
number d(p, q), called the distance from p to g, such that

(@ d(p,q)>0if p+#q;d(p,p)=0;

() d(p,q) =d(,p);

(¢) d(p,q) <d(p,r)+d(r,q), for any r € X.

Any function with these three properties is called a distance function, or
a metric.
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2.16 Examples The most important examples of metric spaces, from our
standpoint, are the euclidean spaces R*, especially R! (the real line) and R? (the
complex plane); the distance in R* is defined by

(19) dx,y)=|x-y| (X, yeR".

By Theorem 1.37, the conditions of Definition 2.15 are satisfied by (19).

It is important to observe that every subset Y of a metric space X is a metric
space in its own right, with the same distance function. For it is clear that if
conditions (a) to (c) of Definition 2.15 hold for p, g, r € X, they also hold if we
restrict p, g, r to lie in Y.

Thus every subset of a euclidean space is a metric space. Other examples
are the spaces €(K) and #%(u), which are discussed in Chaps. 7 and 11, respec-
tively.

2.17 Definition By the segment (a, b) we mean the set of all real numbers x

such that a < x < b.
By the interval [a, b] we mean the set of all real numbers x such that

a<x<b.
Occasionally we shall also encounter ““half-open intervals’ [a, b) and (a, b];
the first consists of all x such that @ < x < b, the second of all x such that

a<x<hb.

Ifa; <b;fori=1,...,k, the set of all points X = (x,, ..., x;) in R* whose
coordinates satisfy the inequalities a; < x; < b; (1 <i<k) is called a k-cell.
Thus a 1-cell is an interval, a 2-cell is a rectangle, etc.

If x € R*and r > 0, the open (or closed) ball B with center at x and radius r
is defined to be the set of all y € R* such that |y — x| < r (or |y — x| < r).

We call a set E < R* convex if

X+ (1 —=A)yeE

whenever xe E,ye E,and 0 < 1< 1.
For example, balls are convex. For if |y—x| <r, |z—x| <r, and
0 <A< 1, we have

|2y +(1 =Dz — x| = [A(y - %) + (1 = )z - x)|
SAy—=-x|+0=A|z—-x|<ir+(1=Wr

=r.

The same proof applies to closed balls. It is also easy to see that k-cells are
convex.
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2.18 Definition Let X be a metric space. All points and sets mentioned below
are understood to be elements and subsets of X.

(@)
(b)
©

@
(e)

)
(9)

)

A neighborhood of p is a set N,(p) consisting of all ¢ such that
d(p,q) < r, for some r > 0. The number r is called the radius of N,(p).
A point p is a limit point of the set E if every neighborhood of p
contains a point ¢ # p such thatge E.

If pe E and p is not a limit point of E, then p is called an isolated
point of E.

E is closed if every limit point of E is a point of E.

A point p is an interior point of E if there is a neighborhood N of p
such that N c E.

E is open if every point of E is an interior point of E.

The complement of E (denoted by E°)is the set of all points pe X
such that p¢ E.

E is perfect if E is closed and if every point of E is a limit point
of E.

(i) E is bounded if there is a real number M and a point g € X such that

0))

d(p,g)<MforallpeE.
E is dense in X if every point of X is a limit point of E, or a point of
E (or both).

Let us note that in R! neighborhoods are segments, whereas in R? neigh-
borhoods are interiors of circles.

2.19 Theorem Every neighborhood is an open set.

Proof Consider a neighborhood E = N,(p), and let ¢ be any point of E.
Then there is a positive real number 4 such that

d(p,q) =r—h.

For all points s such that d(g, s) < 4, we have then

d(p,s)<d(p,q)+dg,s)<r—h+h=r,

so that s € E. Thus g is an interior point of E.

220 Theorem If p is a limit point of a set E, then every neighborhood of p
contains infinitely many points of E.

Proof Suppose there is a neighborhood N of p which contains only a
finite number of points of E. Let g,,...,q, be those points of N n E,
which are distinct from p, and put

r = min d@hqm)
1smsn
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[we use this notation to denote the smallest of the numbers d(p, ¢,), ...,
d(p, q,)]. The minimum of a finite set of positive numbers is clearly posi-
tive, so that r > 0.

The neighborhood N,(p) contains no point ¢ of E such that g # p,
so that p is not a limit point of E. This contradiction establishes the
theorem,

Corollary A finite point set has no limit points.

2.21 Examples Let us consider the following subsets of R?:

(a) The set of all complex z such that |z| < 1.

(b) The set of all complex 2 such that |z| < 1.

(¢) A nonempty finite set.

(d) The set of all integers.

(¢) The set consisting of the numbers 1/n(n =1, 2, 3,...). Let us note
that this set E has a limit point (namely, z = 0) but that no point of E is
a limit point of E; we wish to stress the difference between having a limit
point and containing one.

(f) The set of all complex numbers (that is, R?).

(9) The segment (a, b).

Let us note that (d), (), (9) can be regarded also as subsets of R!.
Some properties of these sets are tabulated below:

Closed  Open Perfect  Bounded

(a) No Yes No Yes
) Yes No Yes Yes
(© Yes No No Yes
()] Yes No No No
(e) No No No Yes
N Yes Yes Yes No
(9 No No Yes

In (g), we left the second entry blank. The reason is that the segment
(a, b) is not open if we regard it as a subset of R?, but it is an open subset of R!.
2.22 Theorem Let{E,} be a(finite or infinite) collection of sets E,. Then
(0) (Y &) =0 ED.

Proof Let A and B be the left and right members of (20). If x € 4, then

x ¢, E,, hence x ¢ E, for any o, hence x € Ef for every a, so that x € ) EC.
Thus A = B.
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Conversely, if x € B, then x € E§ for every a, hence x ¢ E, for any «,
hence x ¢, E,, so that x € (|, E,)°. Thus B< 4.
It follows that 4 = B.

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x€ E. Then x ¢ E°, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° n N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E°. Then every
neighborhood of x contains a point of E¢, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E€ is closed.

Corollary A set F is closed if and only if its complement is open.

2.24 Theorem

@n

(a) For any collection {G,} of open sets,)s G, is open.

(b) For any collection {F,} of closed sets, 4 Fy is closed.

(¢) For any finite collection G, ..., G, of open sets, (Y=, G, is open.
(d) For any finite collection F,, ..., F, of closed sets,\ )}, F, is closed.

Proof Put G =), G,. If xe G, then x € G, for some a. Since x is an
interior point of G,, x is also an interior point of G, and G is open. This
proves (a).

By Theorem 2.22,

Oy =y,

and F; is open, by Theorem 2.23. Hence (a) implies that (21) is open so
that N, F, is closed.

Next, put H =\, G,. For any x € H, there exist neighborhoods
N, of x, with radii r;, such that Ny G,;(i=1,...,n). Put

r=min(y, ..., ),

and let N be the neighborhood of x of radius ». Then N = G, for i =1,
..., n, so that N c H, and H is open.
By taking complements, (d) follows from (c):

(I'L:)l Fl)c = lél(Ff).
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2.25 Examples In parts (c) and (d) of the preceding theorem, the finiteness of
11
the collections is essential. For let G, be the segment (— = ;) n=123,..)

Then G, is an open subset of R!. Put G = (\%, G,. Then G consists of a single
point (namely, x = 0) and is therefore not an open subset of R'.

Thus the intersection of an infinite collection of open sets need not be open.
Similarly, the union of an infinite collection of closed sets need not be closed.

2.26 Definition If X is a metric space, if E c X, and if E’ denotes the set of
all limit points of E in X, then the closure of E is the set E = E L E'.

2.27 Theorem If X is a metric space and E < X, then

(@) Eisclosed,
(b) E =E ifandonly if E is closed,
(¢) E < F for every closed set F = X such that E < F.

By (a) and (c), E 1s the smallest closed subset of X that contains E.

Proof

(@) Ifpe X and p ¢ E then p is neither a point of E nor a limit point of E.
Hence p has a neighborhood which does not intersect E. The complement
of E is therefore open. Hence E is closed.

(b)) If E=E, (a) implies that E is closed. If E is closed, then E' = E
[by Definitions 2.18(d) and 2.26), hence E = E.

(¢) If Fisclosed and F > E, then F> F', hence F> E’. Thus F> E.

2.28 Theorem Let E be a nonempty set of real numbers which is bounded above.
Lety =sup E. Theny € E. Hence y € E if E is closed.

Compare this with the examples in Sec. 1.9.

Proof If ye E then ye E. Assume y ¢ E. For every h > 0 there exists
then a point x € E such that y — & < x < y, for otherwise y — & would be
an upper bound of E. Thus y is a limit point of E. Hence y € E.

2.29 Remark Suppose E < Y < X, where X is a metric space. To say that E
is an open subset of X means that to each point p € E there is associated a
positive number r such that the conditions d(p, q) < r,q € X imply that ¢ € E.
But we have already observed (Sec. 2.16) that Y is also a metric space, so that
our definitions may equally well be made within Y. To be quite explicit, let us
say that E is open relative to Y if to each p € E there is associated an r > 0 such
that g € E whenever d(p,q) <r and ge Y. Example 2.21(g) showed that a set
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may be open relative to Y without being an open subset of X. However, there
is a simple relation between these concepts, which we now state.

2.30 Theorem Suppose Y < X. A subset E of Y is open relative to Y if and
only if E =Y n G for some open subset G of X.

Proof Suppose E is open relative to Y. To each p € E there is a positive
number r, such that the conditions d(p,q) <r,,q € Y imply that g€ E.
Let ¥, be the set of all g € X such that d(p, ¢) < r,, and define
G pys ¥

Then G is an open subset of X, by Theorems 2.19 and 2.24.

Since pe V,forallpeE,itisclearthat Ec G n Y.

By our choice of V,, we have ¥, n Y c E for every p € E, so that
Gn YcE. Thus E=Gn Y, and one half of the theorem is proved.

Conversely, if G is open in X and E=G N Y, every pe E has a
neighborhood ¥, = G. Then V, n Y < E, so that E is open relative to Y.

COMPACT SETS

231 Definition By an open cover of a set E in a metric space X we mean a
collection {G,} of open subsets of X such that E < |J, G,.

2.32 Definition A subset X of a metric space X is said to be compact if every
open cover of K contains a finite subcover.

More explicitly, the requirement is that if {G,} is an open cover of K, then
there are finitely many indices «, ..., &, such that

KcG, v-uG,.

The notion of compactness is of great importance in analysis, especially
in connection with continuity (Chap. 4).

It is clear that every finite set is compact. The existence of a large class of
infinite compact sets in R* will follow from Theorem 2.41.

We observed earlier (in Sec. 2.29) that if E = Y < X, then E may be open
relative to Y without being open relative to X. The property of being open thus
depends on the space in which E is embedded. The same is true of the property
of being closed.

Compactness, however, behaves better, as we shall now see. To formu-
late the next theorem, let us say, temporarily, that X is compact relative to X if
the requirements of Definition 2.32 are met.
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Theorem Suppose K = Y < X. Then K is compact relative to X if and

only if K is compact relative to Y.

By virtue of this theorem we are able, in many situations, to regard com-

pact sets as metric spaces in their own right, without paying any attention to
any embedding space. In particular, although it makes little sense to talk of
open spaces, or of closed spaces (every metric space X is an open subset of itself,
and is a closed subset of itself), it does make sense to talk of compact metric
spaces.

(22)

(23)

2.34

2.35

Proof Suppose K is compact relative to X, and let {V,} be a collection
of sets, open relative to Y, such that K = (J, V,. By theorem 2.30, there
are sets G,, open relative to X, such that ¥, = Y n G,, for all «; and since
K is compact relative to X, we have

KcG, v vG,,

for some choice of finitely many indices a,, ..., a,. Since K < Y, (22)
implies
KeVy O U V..

This proves that K is compact relative to Y.

Conversely, suppose K is compact relative to Y, let {G,} be a col-
lection of open subsets of X which covers K, and put V, = Y n G,. Then
(23) will hold for some choice of «,...,a,; and since V, < G,, (23)
implies (22).

This completes the proof.

Theorem Compact subsets of metric spaces are closed.

Proof Let K be a compact subset of a metric space X. We shall prove
that the complement of K is an open subset of X.

Suppose pe X, p ¢ K. If g€ K, let V, and W, be neighborhoods of p
and g, respectively, of radius less than }d(p, q) [see Definition 2.18(a)].
Since K is compact, there are finitely many points g, ..., ¢, in K such that

KcW,u-uW, =W

If V=V, n-nV,, then Vis a neighborhood of p which does not
intersect W. Hence V < K¢, so that p is an interior point of K°. The
theorem follows.

Theorem Closed subsets of compact sets are compact.

Proof Suppose F c K < X, Fis closed (relative to X), and K is compact.
Let {V,} be an open cover of F. If F¢is adjoined to {V,}, we obtain an
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open cover Q of K. Since K is compact, there is a finite subcollection ®
of Q which covers K, and hence F. If F¢is a member of ®, we may remove
it from ® and still retain an open cover of F. We have thus shown that a
finite subcollection of {V,} covers F.

Corollary If F is closed and K is compact, then F ~ K is compact.

Proof Theorems 2.24(b) and 2.34 show that Fn K is closed; since
F n K c K, Theorem 2.35 shows that F n K is compact.

2.36 Theorem If{K,}is a collection of compact subsets of a metric space X such
that the intersection of every finite subcollection of {K,} is nonempty, then () K,
is nonempty.

Proof Fix a member K of {K,} and put G, = K. Assume that no point
of K; belongs to every K,. Then the sets G, form an open cover of X,;
and since K, is compact, there are finitely many indices «,, ..., a, such
that K; < G,, U *** U G,,. But this means that

KinkKy,n'"nk,

is empty, in contradiction to our hypothesis.

Corollary If {K,} is a sequence of nonempty compact sets such that K, > K, ,
(n=1,2,3,...), then(\Y K, is not empty.

2.37 Theorem If E is an infinite subset of a compact set K, then E has a limit
point in K.

Proof If no point of K were a limit point of E, then each g € K would
have a neighborhood ¥, which contains at most one point of E (namely,
g, if g€ E). It is clear that no finite subcollection of {V,} can cover E;
and the same is true of X, since E < K. This contradicts the compactness
of K.

2.38 Theorem If {I,} is a sequence of intervals in R, such that I,>1I,,,
(n=1,23,...), then Y I, is not empty.

Proof If I, =[a,, b,], let E be the set of all @,. Then E is nonempty and
bounded above (by b,). Let x be the sup of E. If m and n are positive
integers, then

an S am+n S bm+u Sbm’

so that x < b,, for each m. Since it is obvious that a, < x, we see that
xel,form=123,....
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Theorem Let k be a positive integer. If {I,} is a sequence of k-cells such

that I, o I,.,(n=1,2,3,...), then ¥ I, is not empty.

2.40

Proof Let I, consist of all points x = (xy, ..., x;) such that
d,.,jsijb,.J (lSjSk;n=1,2,3,...),

and put I, ; =[a,; b,;]. For each j, the sequence {I, ;} satisfies the
hypotheses of Theorem 2.38. Hence there are real numbers x}(1 <j < k)
such that

a,;<x;<b,; (1<j<k;n=123,..).

Setting x* = (x¥, ..., x}), we see that x*e I, for n=1,2,3,.... The
theorem follows.

Theorem Every k-cell is compact.

Proof Let I be a k-cell, consisting of all points x = (x,, ..., x;) such
that a; <x; < b; (1 <j< k). Put

5= {7: ®; - a,)zim.

Then |x —y| <9,ifxel, yel

Suppose, to get a contradiction, that there exists an open cover {G,}
of I which contains no finite subcover of I. Put c; =(a; + b;)/2. The
intervals [a;, ¢;] and [c;, b;] then determine 2* k-cells Q; whose union is /.
At least one of these sets Q,, call it J;, cannot be covered by any finite
subcollection of {G,} (otherwise I could be so covered). We next subdivide
I, and continue the process. We obtain a sequence {/,} with the following
properties:

(@ I o, oI;o
(b) 1, is not covered by any finite subcollection of {G,};
(c) ifxel,andyel,, then |[x —y| <27"4.

By (a) and Theorem 2.39, there is a point x* which lies in every I,.
For some o, x*€ G,. Since G, is open, there exists r > 0 such that
|y — x*| <r implies that y e G,. If n is so large that 27" < r (there is
such an n, for otherwise 2" < é/r for all positive integers n, which is
absurd since R is archimedean), then (¢) implies that I, = G,, which con-
tradicts ().

This completes the proof.

The equivalence of (a) and (b) in the next theorem is known as the Heine-

Borel theorem.
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2.41 Theorem Ifa set E in R* has one of the following three properties, then it
has the other two.

(a) Eis closed and bounded.
(b) Eis compact.
(c) Every infinite subset of E has a limit point in E.

Proof If (@) holds, then E < I for some k-cell I, and (b) follows from
Theorems 2.40 and 2.35. Theorem 2.37 shows that (b) implies (c). It
remains to be shown that (c) implies (a).

If E is not bounded, then E contains points x, with

X, >n (n=1,273,..).

The set S consisting of these points x, is infinite and clearly has no limit
point in R*, hence has none in E. Thus (c) implies that E is bounded.

If E is not closed, then there is a point x, € R* which is a limit point
of E but not a point of E. Forn=1,2,3,..., there are points x, € E
such that |x, — xo| < 1/n. Let S be the set of these points x,. Then S is
infinite (otherwise |x, — x,| would have a constant positive value, for
infinitely many n), S has x, as a limit point, and S has no other limit
point in R*. Forifye R¥ y # x,, then

[%a = ¥] 2 [Xo —¥] — |Xy — Xo]
> %o - ¥] =22 3% - V]
oY a—2l% y

for all but finitely many n; this shows that y is not a limit point of S
(Theorem 2.20).
Thus S has no limit point in E; hence E must be closed if (c) holds.

We should remark, at this point, that (b) and (c) are equivalent in any
metric space (Exercise 26) but that (@) does not, in general, imply (b) and (c).
Examples are furnished by Exercise 16 and by the space %2, which is dis-
cussed in Chap. 11.

2.42 Theorem (Weierstrass) Every bounded infinite subset of R* has a limit
point in R,

Proof Being bounded, the set E in question is a subset of a k-cell I = R*.
By Theorem 2.40, I is compact, and so E has a limit point in I, by
Theorem 2.37.
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PERFECT SETS

2.43 Theorem Let P be a nonempty perfect set in R*. Then P is uncountable.

Proof Since P has limit points, P must be infinite. Suppose P is count-
able, and denote the points of P by x,, X,, X3,.... We shall construct a
sequence {¥,} of neighborhoods, as follows.

Let ¥, be any neighborhood of x,. If ¥, consists of all y € R* such
that |y — x,| < r, the closure V, of ¥/, is the set of all y € R* such that
ly —x,| <r.

Suppose V,, has been constructed, so that ¥, n P is not empty. Since
every point of P is a limit point of P, there is a neighborhood ¥, such
that (i) V,,, c V,, (i) X, & V,41, (iii) V,4+; n P is not empty. By (iii),
V,+1 satisfies our induction hypothesis, and the construction can proceed.

Put K, = V, n P. Since V, is closed and bounded, V, is compact.
Since x, ¢ K., no point of P lies in 7 K,. Since K, < P, this implies
that N K, is empty. But each K, is nonempty, by (iii), and X, > K, ,,,
by (i); this contradicts the Corollary to Theorem 2.36.

Corollary Every interval [a, b] (a < b) is uncountable. In particular, the set of
all real numbers is uncountable.

2.44 The Cantor set The set which we are now going to construct shows
that there exist perfect sets in R' which contain no segment.

Let E, be the interval [0, 1]. Remove the segment (3, ), and let E; be
the union of the intervals

[0, 3] [%, 1].

Remove the middle thirds of these intervals, and let E, be the union of the
intervals

[0’ _;-]' [%’ %]’ [63 %]’ ['g’ l]
Continuing in this way, we obtain a sequence of compact sets E,, such that

(a) ElDEZDE:,D"';
(b) E, is the union of 2" intervals, each of length 37",

The set

is called the Cantor set. P is clearly compact, and Theorem 2.36 shows that P
is not empty.
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No segment of the form
(3k +1 3k+ 2)
R S
where k and m are positive integers, has a point in common with P. Since every
segment («, B) contains a segment of the form (24), if

29

m B—a
3<6

P contains no segment.

To show that P is perfect, it is enough to show that P contains no isolated
point. Let x € P, and let S be any segment containing x. Let I/, be that interval
of E, which contains x. Choose n large enough, so that I, = S. Let x, be an
endpoint of I,, such that x, # x.

1t follows from the construction of P that x, € P. Hence x is a limit point
of P, and P is perfect.

One of the most interesting properties of the Cantor set is that it provides
us with an example of an uncountable set of measure zero (the concept of
measure will be discussed in Chap. 11).

CONNECTED SETS

2.45 Definition Two subsets 4 and B of a metric space X are said to be
separated if both A n B and 4 n B are empty, i.e., if no point of 4 lies in the
closure of B and no point of B lies in the closure of 4.

A set E = X is said to be connected if E is not a union of two nonempty
separated sets.

2.46 Remark Separated sets are of course disjoint, but disjoint sets need not
be separated. For example, the interval [0, 1] and the segment (1, 2) are not
separated, since 1 is a limit point of (1, 2). However, the segments (0, 1) and
(1, 2) are separated.

The connected subsets of the line have a particularly simple structure:

2.47 Theorem A subset E of the real line R! is connected if and only if it has the
Sfollowing property: If x€e E, ye E, and x <z < y, then ze E.

Proof If there exist x € E, y € E, and some z € (x, y) such that z ¢ E, then
E = A, U B, where

A, =En (-, 2), B, =En (2, ).
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Since x € A; and y € B,, A and B are nonempty. Since 4, = (— 0, z) and
B, c (z, ), they are separated. Hence E is not connected.

To prove the converse, suppose E is not connected. Then there are
nonempty separated sets A and B such that A U B=E. Pick xe€ 4, y€ B,
and assume (without loss of generality) that x < y. Define

z =sup (4 N [x, y].

By Theorem 2.28, z€ A; hence z ¢ B. In particular, x <z < y.

If z¢ A, it follows that x <z < y and z ¢ E.

If ze A, then z ¢ B, hence there exists z, such that z <z, <y and
z,¢B. Thenx <z, <yandz ¢E.

EXERCISES

0 & W

. Prove that the empty set is a subset of every set.
. A complex number z is said to be algebraic if there are integers ao, ..., a., not all

zero, such that
Ao z"+a 2" 4 a2+ a, =0.

Prove that the set of all algebraic numbers is countable. Hint: For every positive
integer N there are only finitely many equations with

n+ |ao| + |ay| ++** + |as| =N.

. Prove that there exist real numbers which are not algebraic.
. Is the set of all irrational real numbers countable ?
. Construct a bounded set of real numbers with exactly three limit points.

Let E’ be the set of all limit points of a set E. Prove that E” is closed. Prove that
E and E have the same limit points. (Recall that £ = E U E".) Do E and E’ always
have the same limit points?

. Let Ay, A2, A3, ... be subsets of a metric space.

(a) If B, = JI=1 4, prove that B, = (., 4;, forn=1,2,3,....
(b) IfB= Ur’-l A(, prove that B = U[w-x Z(.
Show, by an example, that this inclusion can be proper.

. Is every point of every open set E < R? a limit point of E? Answer the same

question for closed sets in R?,

Let E° denote the set of all interior points of a set E. [See Definition 2.18(¢);
E? is called the interior of E.]

(a) Prove that E° is always open.

(b) Prove that E is open if and only if E° =E.

(¢) If G < E and G is open, prove that G < E°,

(d) Prove that the complement of E° is the closure of the complement of E.

(e) Do E and E always have the same interiors ?

(f) Do E and E® always have the same closures?
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Let X be an infinite set. For p € X and ¢ € X, define
1 (ifp # q)
0 (ifp =gq).

Prove that this is a metric. Which subsets of the resulting metric space are open?
Which are closed? Which are compact?
For x € R* and y € R?, define

di(x, y) = (x — y)?,
dy(x, y) =V ][x—y|,
dy(x, y) =|x* — y*|,
du(x, y) =|x—2y|,

[x—y|

ds(x, y) = Tl

Determine, for each of these, whether it is a metric or not.

Let K < R! consist of 0 and the numbers 1/n, forn=1, 2, 3, .... Prove that Kis
compact directly from the definition (without using the Heine-Bore! theorem).
Construct a compact set of real numbers whose limit points form a countable set.
Give an example of an open cover of the segment (0, 1) which has no finite sub-
cover.

Show that Theorem 2.36 and its Corollary become false (in R, for example) if the
word “‘compact” is replaced by ‘“‘closed” or by “bounded.”

Regard Q, the set of all rational numbers, as a metric space, with d(p, q) =|p —¢q|.
Let E be the set of all p e Q such that 2 < p? <3. Show that E is closed and
bounded in @, but that E is not compact. Is E open in Q?

Let E be the set of all x € [0. 1] whose decimal expansion contains only the digits
4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is E perfect?

Is there a nonempty perfect set in R' which contains no rational number?

(a) If A and B are disjoint closed sets in some metric space X, prove that they
are separated.

(b) Prove the same for disjoint open sets.

(c) Fixpe X, 8 >0, define 4 to be the set of all g € X for which d(p, g) < 8, define
B similarly, with > in place of <. Prove that 4 and B are separated.

(d) Prove that every connected metric space with at least two points is uncount-
able. Hint: Use (c).

Are closures and interiors of connected sets always connected? (Look at subsets
of R%)

Let 4 and B be separated subsets of some R*, suppose a € 4, b € B, and define

pt)=(10—tha+tb
for te R'. Put Ao =p~'(A4), Bo =p~'(B). [Thus t € A, if and only if p(¢) € 4.]
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(a) Prove that 4, and B, are separated subsets of R*.
(b) Prove that there exists to € (0, 1) such that p(to) ¢ 4 U B.
(c) Prove that every convex subset of R* is connected.

22. A metric space is called separable if it contains a countable dense subset. Show

that R* is separable. Hint: Consider the set of points which have only rational

coordinates.

A collection {¥,} of open subsets of X is said to be a base for X if the following

is true: For every x€ X and every open set G < X such that x€ G, we have

x € V., < G for some «. In other words, every open set in X is the union of a

subcollection of {V.}.

Prove that every separable metric space has a countable base. Hint: Take
all neighborhoods with rational radius and center in some countable dense subset
of X.

24. Let X be a metric space in which every infinite subset has a limit point. Prove that
X is separable. Hint: Fix 8 >0, and pick x, € X. Having chosen xy, ..., x; € X,
choose x;., € X, if possible, so that d(x;, x;+,)=>8 for i =1, ..., j. Show that
this process must stop after a finite number of steps, and that X can therefore be
covered by finitely many neighborhoods of radius 8. Taked = 1/n(n=1,2,3,...),
and consider the centers of the corresponding neighborhoods.

23

25. Prove that every compact metric space K has a countable base, and that K is
therefore separable. Hint: For every positive integer n, there are finitely many
neighborhoods of radius 1/n whose union covers K.

26. Let X be a metric space in which every infinite subset has a limit point. Prove
that X is compact. Hint: By Exercises 23 and 24, X has a countable base. It
follows that every open cover of X has a countable subcover {G,}, n=1,2,3,....
If no finite subcollection of {G,} covers X, then the complement F, of G, U *** U G,
is nonempty for each n, but () F, is empty. If E is a set which contains a point
from each F,, consider a limit point of E, and obtain a contradiction.

27. Define a point p in a metric space X to be a condensation point of a set E < X if
every neighborhood of p contains uncountably many points of E.
Suppose E < R¥, E is uncountable, and let P be the set of all condensation
points of E. Prove that P is perfect and that at most countably many points of E
are not in P. In other words, show that P n E is at most countable. Hint: Let
{V.} be a countable base of R*, let # be the union of those V, for which E n V,
is at most countable, and show that P = W*,

28. Prove that every closed set in a separable metric space is the union of a (possibly
empty) perfect set and a set which is at most countable. (Corollary: Every count-

able closed set in R* has isolated points.) Hint: Use Exercise 27.

29. Prove that every open set in R! is the union of an at most countable collection of
disjoint segments. Hint: Use Exercise 22,



