4

CONTINUITY

The function concept and some of the related terminology were introduced in
Definitions 2.1 and 2.2. Although we shall (in later chapters) be mainly interested
in real and complex functions (i.e., in functions whose values are real or complex
numbers) we shall also discuss vector-valued functions (i.e., functions with
values in R*) and functions with values in an arbitrary metric space. The theo-
rems we shall discuss in this general setting would not become any easier if we
restricted ourselves to real functions, for instance, and it actually simplifies and
clarifies the picture to discard unnecessary hypotheses and to state and prove
theorems in an appropriately general context.

The domains of definition of our functions will also be metric spaces,
suitably specialized in various instances.

LIMITS OF FUNCTIONS

4.1 Definition Let X and Y be metric spaces; suppose E < X, f maps E into
Y, and p is a limit point of E. We write f(x) —» ¢ as x —» p, or

(1) lim f(x) =¢

x=p
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if there is a point g€ Y with the following property: For every ¢ >0 there
exists a 6 > 0 such that

(©) dy(f(x),q) < ¢
for all points x € E for which
3) 0 <dy(x,p) <é.

The symbols dy and dy refer to the distances in X and Y, respectively.

If X and/or Y are replaced by the real line, the complex plane, or by some
euclidean space R*, the distances dy, dy are of course replaced by absolute values,
or by norms of differences (see Sec. 2.16).

It should be noted that pe X, but that p need not be a point of E
in the above definition. Moreover, even if pe E, we may very well have
f(p) # lim, ., f(x).

We can recast this definition in terms of limits of sequences:

4.2 Theorem Let X, Y, E, f, and p be as in Definition 4.1. Then

@) ,ltl_rf:f (x) =¢
if and only if
% lim f(p,) =¢

n=+o

for every sequence {p,} in E such that

©® Pn# P, nlinolo Pn=P.
Proof Suppose (4) holds. Choose {p,} in E satisfying (6). Let ¢>0
be given. Then there exists 6 > 0 such that dy(f(x),q)<¢ if xeE
and 0 <dy(x, p) <d. Also, there exists N such that n> N implies
0 <dx(p,,p) <é. Thus, for n> N, we have dy(f(p,),q) <&, which
shows that (5) holds.

Conversely, suppose (4) is false. Then there exists some & > 0 such
that for every & > 0 there exists a point x € E (depending on ), for which
dy(f(x), g) = & but 0 < dy(x, p) < 6. Takingd,=1/n(n=1,2,3,...), we
thus find a sequence in E satisfying (6) for which (5) is false.

Corollary If f has a limit at p, this limit is unique.

This follows from Theorems 3.2(5) and 4.2.



CONTINUITY 85

4.3 Definition Suppose we have two complex functions, f'and g, both defined
on E. By f+ g we mean the function which assigns to each point x of E the
number f(x) + g(x). Similarly we define the difference f— g, the product fg,
and the quotient f/g of the two functions, with the understanding that the quo-
tient is defined only at those points x of E at which g(x) # 0. If f assigns to each
point x of E the same number c, then f is said to be a constant function, or
simply a constant, and we write f=c. If f and g are real functions, and if
f(x) = g(x) for every x € E, we shall sometimes write /> g, for brevity.
Similarly, if f and g map E into R¥, we define f + g and f* g by

(f+g)x) =1(x) +g(x), (@ )x)=1(x)" g(x);
and if 4 is a real number, (Af)(x) = Af(x).

4.4 Theorem Suppose E c X, a metric space, p is a limit point of E, f and g
are complex functions on E, and
lim f(x) =4, lim g(x) = B.
x-p x-p
Then (a) lim (f+ g)(x) = A + B;
x—p
() lim (fg)(x) = 4B;

x—=p

. (] A .
(¢) lim (—)(x) =—,if B#0.
x=p \g B
Proof In view of Theorem 4.2, these assertions follow immediately from
the analogous properties of sequences (Theorem 3.3).

Remark Iffand g map E into R¥, then (@) remains true, and () becomes
) lim (f-g)(x) =A-B.

x=p

(Compare Theorem 3.4.)

CONTINUOUS FUNCTIONS

4.5 Definition Suppose X and Y are metric spaces, E c X, p € E, and f maps
E into Y. Then fis said to be continuous at p if for every & > O there exists a
0 > 0 such that

dy(fx).f(p) <&

for all points x € E for which dy(x, p) < 6.
If f'is continuous at every point of E, then f'is said to be continuous on E.
It should be noted that f has to be defined at the point p in order to be
continuous at p. (Compare this with the remark following Definition 4.1.)
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If p is an isolated point of E, then our definition implies that every function
S which has E as its domain of definition is continuous at p. For, no matter
which ¢ > 0 we choose, we can pick § > 0 so that the only point x € E for which
dy(x, p) < is x = p; then

dy(f(x), f(p)) =0 < &.

4.6 Theorem In the situation given in Definition 4.5, assume also that p is a
limit point of E. Then f is continuous at p if and only if lim,_, , f(x) = f(p).

Proof This is clear if we compare Definitions 4.1 and 4.5.

We now turn to compositions of functions. A brief statement of the
following theorem is that a continuous function of a continuous function is
continuous.

4.7 Theorem Suppose X, Y, Z are metric spaces, E = X, f maps E into Y, g
maps the range of f, f(E), into Z, and h is the mapping of E into Z defined by

h(x) =g(f/(x)) (x€E).

If f is continuous at a point p € E and if g is continuous at the point f(p), then h is
continuous at p.

This function /4 is called the composition or the composite of fand g. The
notation

h=gof
is frequently used in this context,

Proof Let ¢ >0 be given. Since g is continuous at f(p), there exists
n > 0 such that

dz(9(»), 9(/(P)) < eif dy(y, f(p)) <n and y € f(E).
Since f'is continuous at p, there exists > 0 such that

dy(f(x), f(p)) <n if dy(x, p) < 6 and x € E.
It follows that

dz(h(x), h(p)) = dz(9(f (x)), 9(f(P))) < &

if dy(x, p) < 6 and x € E. Thus k is continuous at p.
4.8 Theorem A mapping f of a metric space X into a metric space Y is con-
tinuous on X if and only if f (V') is open in X for every open set V in Y.

(Inverse images are defined in Definition 2.2.) This is a very useful charac-
terization of continuity.
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Proof Suppose fis continuous on X and V¥ is an open set in Y. We have
to show that every point of f~!(¥) is an interior point of f~(¥). So,
suppose p € X and f(p) € V. Since V is open, there exists ¢ > 0 such that
ye Vifdy(f(p),») <e; and since f is continuous at p, there exists § > 0
such that dy(f(x), f(p)) < & if dy(x, p) < 8. Thus xef~!(V) as soon as
dy(x, p) <.

Conversely, suppose f ~ (V) is open in X for every open set ¥ in Y.
Fix pe X and ¢ > 0, let V" be the set of all y € ¥ such that dy(y, f(p)) < &.
Then V is open; hence f ~!(V) is open; hence there exists & > 0 such that
xef ™' (V)as soon as dy(p, x) <. Butif xe f~'(V), then f(x) eV, so
that dy(f(x), f(p)) < e.

This completes the proof.

Corollary A mapping f of a metric space X into a metric space Y is continuous if
and only if f ~(C) is closed in X for every closed set C in Y.

This follows from the theorem, since a set is closed if and only if its com-

plement is open, and since f ~(E€) = [f ~}(E)]° for every E = Y.

We now turn to complex-valued and vector-valued functions, and to

functions defined on subsets of R*.

4.9 Theorem Let fand g be complex continuous functions on a metric space X.
Then f + g, fg, and f [g are continuous on X.

4.10

™

In the last case, we must of course assume that g(x) # 0, for all x € X.

Proof At isolated points of X there is nothing to prove. At limit points,
the statement follows from Theorems 4.4 and 4.6.

Theorem

(@) Letfy, ..., f; be real functions on a metric space X, and let f be the
mapping of X into R* defined by

fx) =(fi®), .., ix)  (xe X);

then { is continuous if and only if each of the functions f,, . .., f is continuous.
(b) Iff and g are continuous mappings of X into R*, then f + g and f+ g
are continuous on X.

The functions f;, ..., f; are called the components of f. Note that
f + g is a mapping into R*, whereas f + g is a rea/ function on X,
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Proof Part (a) follows from the inequalities

k
1569 1091 < 16 = 10)] ={ 3. i) ~£i0) )
forj=1, ..., k. Part (b) follows from (a) and Theorem 4.9.

i

4.11 Examples If x,, ..., x, are the coordinates of the point x € R*, the
functions ¢, defined by

(®) dx) = x, (xe RY
are continuous on R*, since the inequality

|¢i(x) — o] < [x -]

shows that we may take = ¢ in Definition 4.5. The functions ¢, are sometimes
called the coordinate functions.
Repeated application of Theorem 4.9 then shows that every monomial

©®) XUXZ e X

where n,, ..., n, are nonnegative integers, is continuous on R*. The same is
true of constant multiples of (9), since constants are evidently continuous. It
follows that every polynomial P, given by

(10) P(X) =2y con X ... X% (x€RY),

is continuous on R*. Here the coefficients c,,...,, are complex numbers, ny, ...,
are nonnegative integers, and the sum in (10) has finitely many terms.
Furthermore, every rational function in x,, ..., x;, that is, every quotient
of two polynomials of the form (10), is continuous on R* wherever the denomi-
nator is different from zero.
From the triangle inequality one sees easily that

(an lIx] = lyl| < |x-y| (x,yeR".

Hence the mapping x — | x| is a continuous real function on R*.

If now f is a continuous mapping from a metric space X into R¥, and if ¢
is defined on X by setting ¢(p) = |f(p)|, it follows, by Theorem 4.7, that ¢ is a
continuous real function on X.

4.12 Remark We defined the notion of continuity for functions defined on a
subset E of a metric space X. However, the complement of E in X plays no
role whatever in this definition (note that the situation was somewhat different
for limits of functions). Accordingly, we lose nothing of interest by discarding
the complement of the domain of /. This means that we may just as well talk
only about continuous mappings of one metric space into another, rather than
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of mappings of subsets. This simplifies statements and proofs of some theorems.
We have already made use of this principle in Theorems 4.8 to 4.10, and will
continue to do so in the following section on compactness.

CONTINUITY AND COMPACTNESS

4.13 Definition A mapping f of a set E into R¥ is said to be bounded if there is
a real number M such that |f(x)| < M for all x e E.

4.14 Theorem Suppose f is a continuous mapping of a compact metric space
X into a metric space Y. Then f(X) is compact.

Proof Let{V/,} be an open cover of f(X). Since fis continuous, Theorem
4.8 shows that each of the sets f~!(V,) is open. Since X is compact,
there are finitely many indices, say ay, ..., «,, such that

(12) Xcf (Vo) - ufY(V,).
Since f(f “!(E)) < E for every E c Y, (12) implies that
(13) fX) SV U u Ve

This completes the proof.

Note: We have used the relation f(f~'(E)) c E, valid for Ec Y. If
E < X, then f~'(f(E)) o E; equality need not hold in either case.
We shall now deduce some consequences of Theorem 4.14.

4.15 Theorem If f is a continuous mapping of a compact metric space X into
R, then {(X) is closed and bounded. Thus, { is bounded.

This follows from Theorem 2.41. The result is particularly important
when f'is real:

4.16 Theorem Suppose f is a continuous real function on a compact metric
space X, and
(14 M= sup f(p), m= ing S().

pe

peX
Then there exist points p, g € X such that f(p) = M and f(q) = m.

The notation in (14) means that M is the least upper bound of the set of
all numbers f(p), where p ranges over X, and that m is the greatest lower bound
of this set of numbers.
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The conclusion may also be stated as follows: There exist points p and q
in X such that f(q) < f(x) < f(p) for all x € X; that is, f attains its maximum
(at p) and its minimum (at g).

Proof By Theorem 4.15, f(X) is a closed and bounded set of real num-
bers; hence f(X) contains

M =sup f(X) and m=inff(X),
by Theorem 2.28.

4.17 Theorem Suppose f is a continuous 1-1 mapping of a compact metric
space X onto a metric space Y. Then the inverse mapping f~* defined on Y by

U@ =x  (xeX)
is a continuous mapping of Y onto X.

Proof Applying Theorem 4.8 to £ ™! in place of f, we see that it suffices
to prove that f(¥) is an open set in Y for every open set ¥ in X. Fix such
asetV.

The complement V¢ of V is closed in X, hence compact (Theorem
2.35); hence f(V°) is a compact subset of Y (Theorem 4.14) and so is
closed in Y (Theorem 2.34). Since f is one-to-one and onto, f(V) is the
complement of /(¥ ). Hence f(V) is open.

4.18 Definition Let fbe a mapping of a metric space X into a metric space Y.
We say that f'is uniformly continuous on X if for every & > 0 there exists 6 > 0
such that

(15) d(f). /(@) <e

for all p and g in X for which dy(p, q) < 6.

Let us consider the differences between the concepts of continuity and of
uniform continuity. First, uniform continuity is a property of a function on a
set, whereas continuity can be defined at a single point. To ask whether a given
function is uniformly continuous at a certain point is meaningless. Second, if
S is continuous on X, then it is possible to find, for each & > 0 and for each
point p of X, a number § > 0 having the property specified in Definition 4.5. This
6 depends on ¢ and on p. If f'is, however, uniformly continuous on X, then it is
possible, for each ¢ > 0, to find one number § > 0 which will do for all points
pof X,

Evidently, every uniformly continuous function is continuous. That the
two concepts are equivalent on compact sets follows from the next theorem.
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4.19 Theorem Let f be a continuous mapping of a compact metric space X
into a metric space Y. Then f is uniformly continuous on X.

Proof Let ¢ >0 be given. Since f is continuous, we can associate to
each point p € X a positive number ¢(p) such that

s e

(16) g€ X, dy(p,q) <¢(p) implies dy(/(p), f(g)) <3

Let J(p) be the set of all ¢ € X for which
) dx(p, 9) < 3¢(p)-

Since p € J(p), the collection of all sets J(p) is an open cover of X; and

since X is compact, there is a finite set of points py, ..., p, in X, such that
(18) XcJ(p) v vJ(py)

We put

(19) 6 =% min [¢(py), ..., ¢(pa))-

Then 6 > 0. (This is one point where the finiteness of the covering, in-
herent in the definition of compactness, is essential. The minimum of a
finite set of positive numbers is positive, whereas the inf of an infinite set
of positive numbers may very well be 0.)

Now let ¢ and p be points of X, such that dy(p, g) < 6. By (18), there
is an integer m, 1 < m < n, such that p € J(p,,); hence

(20) dx(p, Pm) < 3P(Pm);

and we also have

dx(q, Pm) < dx(P, 9) + dx(P, Pw) < 0 + 10(Pw) < P (D).
Finally, (16) shows that therefore

dy(f(p): S (@) < dy(f(P), [(Pm)) + dx(/(2), [ (Pm)) < &.

This completes the proof.

An alternative proof is sketched in Exercise 10.
We now proceed to show that compactness is essential in the hypotheses
of Theorems 4.14, 4.15, 4.16, and 4.19.

4.20 Theorem Let E be a noncompact set in R*. Then

(a) there exists a continuous function on E which is not bounded;
(b) there exists a continuous and bounded function on E which has no
maximum.

If, in addition, E is bounded, then
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(2D

(22)

(23)

(¢) there exists a continuous function on E which is not uniformly
continuous.

Proof Suppose first that E is bounded, so that there exists a limit point
x, of E which is not a point of E. Consider

J&) = (x€ E).

x-xO

This is continuous on E (Theorem 4.9), but evidently unbounded. To see
that (21) is not uniformly continuous, let ¢ > 0 and é > 0 be arbitrary, and
choose a point x € E such that |x — x,| <. Taking ¢ close enough to
X, , we can then make the difference |f(t) — f(x)| greater than e, although
|t — x| < é. Since this is true for every é > 0, fis not uniformly continu-
ous on E.

The function g given by

1

1+ (x = x,)? (xeE)

g9(x) =

is continuous on E, and is bounded, since 0 < g(x) < 1. It is clear that

sup g(x) =1,

xeE

whereas g(x) < 1 for all xe E. Thus g has no maximum on E.
Having proved the theorem for bounded sets E, let us now suppose
that E is unbounded. Then f(x) = x establishes (a), whereas

2

x
h(x)=l+x2 (xekE)
establishes (b), since
sup h(x) =1
xeE

and A(x) < 1 for all xe E.
Assertion (¢) would be false if boundedness were omitted from the

hypotheses. For, let E be the set of all integers. Then every function
defined on E is uniformly continuous on E. To see this, we need merely
take 6 < 1 in Definition 4.18.

We conclude this section by showing that compactness is also essential in

Theorem 4.17.
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421 Example Let X be the half-open interval [0, 27) on the real line, and
let f be the mapping of X onto the circle Y consisting of all points whose distance
from the origin is 1, given by

(24) () = (cos ¢, sin t) 0 <t <2n).

The continuity of the trigonometric functions cosine and sine, as well as their
periodicity properties, will be established in Chap. 8. These results show that
f is a continuous 1-1 mapping of X onto Y.

However, the inverse mapping (which exists, since f is one-to-one and
onto) fails to be continuous at the point (1, 0) = f(0). Of course, X is not com-
pact in this example. (It may be of interest to observe that f~! fails to be
continuous in spite of the fact that Y is compact!)

CONTINUITY AND CONNECTEDNESS

4.22 Theorem If fis a continuous mapping of a metric space X into a metric
space Y, and if E is a connected subset of X, then f(E) is connected.

Proof Assume, on the contrary, that f(E) = A U B, where 4 and B are
nonempty separated subsets of Y. PutG = E n f~'(4), H = E n f "(B).

Then E =G v H, and neither G nor H is empty.

Since A = A4 (the closure of 4), we have G < f~!(A); the latter set is
closed, since f'is continuous; hence G = f ~!(4). It follows that f(G) = A.
Since f(H) = B and 4 n B is empty, we conclude that G n H is empty.

The same argument shows that G N H is empty. Thus G and H are
separated. This is impossible if E is connected.

4.23 Theorem Let f be a continuous real function on the interval [a, b). If
f(a) <f(b) and if c is a number such that f(a) < c < f(b), then there exists a
point x € (a, b) such that f(x) = c.

A similar result holds, of course, if f(a) > f(b). Roughly speaking, the
theorem says that a continuous real function assumes all intermediate values on
an interval.

Proof By Theorem 2.47, [a, b] is connected ; hence Theorem 4.22 shows
that f([a, b]) is a connected subset of R!, and the assertion follows if we
appeal once more to Theorem 2.47,

4.24 Remark At first glance, it might seem that Theorem 4.23 has a converse.
That is, one might think that if for any two points x, < x, and for any number ¢
between f(x;) and f(x;) there is a point x in (x,, x,) such that f(x) = c, then f
must be continuous.

That this is not so may be concluded from Example 4.27(d).
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DISCONTINUITIES

If x is a point in the domain of definition of the function f at which f is not
continuous, we say that f'is discontinuous at x, or that f has a discontinuity at x.
If f is defined on an interval or on a segment, it is customary to divide discon-
tinuities into two types. Before giving this classification, we have to define the
right-hand and the left-hand limits of f at x, which we denote by f(x+) and f(x—),
respectively.

4.25 Definition Let f be defined on (a, b). Consider any point x such that
a<x<b. We write

fx+) =4

if £(t,) = q as n — oo, for all sequences {t,} in (x, b) such that ¢, —» x. To obtain
the definition of f(x—), for a < x < b, we restrict ourselves to sequences {z,} in
(a, x).

It is clear that any point x of (a, b), lim f(¢) exists if and only if

=X

Sl =y o=} = Im f(z).

4.26 Definition Let / be defined on (a, b). If fis discontinuous at a point x,
and if f(x+) and f(x—) exist, then f'is said to have a discontinuity of the first
kind, or a simple discontinuity, at x. Otherwise the discontinuity is said to be of
the second kind.

There are two ways in which a function can have a simple discontinuity:
either f(x+) # f(x—) [in which case the value f(x) is immaterial], or f(x+) =

fx=) # f(%).

4.27 Examples
(a) Define

_ 1 (x rational),
S = {0 (x irrational).

Then £ has a discontinuity of the second kind at every point x, since
neither f(x+) nor f(x—) exists.
(b) Define

x (x rational),
S = {0 (x irrational).
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Then fis continuous at x = 0 and has a discontinuity of the second
kind at every other point.

(¢) Define
x+2 (-3<x< -2,
f)=(-x—-2 (-2<x<0),
x+2 O<x<1).

Then f has a simple discontinuity at x =0 and is continuous at
every other point of (—3, 1).
(d) Define

0 (x =0).

Since neither f(0+) nor f(0—) exists, f/ has a discontinuity of the
second kind at x =0. We have not yet shown that sin x is a continuous
function. If we assume this result for the moment, Theorem 4.7 implies
that f'is continuous at every point x # 0.

MONOTONIC FUNCTIONS

We shall now study those functions which never decrease (or never increase) on
a given segment.

4.28 Definition Let f be real on (a, b). Then f is said to be monotonically
increasing on (a, b) if a < x <y < b implies f(x) < f(y). If the last inequality
is reversed, we obtain the definition of a monotonically decreasing function. The
class of monotonic functions consists of both the increasing and the decreasing
functions.

4.29 Theorem Let f be monotonically increasing on (a, b). Then f(x+) and
Sf(x=) exist at every point of x of (a, b). More precisely,

sup f(1) = f(x—) <f(x) <f(x+) =xi<r:£bf(t)-

a<t<x

Furthermore, if a < x <y <b, then

fx+)<f(y-).

Analogous results evidently hold for monotonically decreasing functions.
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Proof By hypothesis, the set of numbers f(7), where a < ¢ < x, is bounded
above by the number f(x), and therefore has a least upper bound which
we shall denote by A. Evidently 4 <f(x). We have to show that
A =f(x-).

Let ¢ > 0 be given. It follows from the definition of 4 as a least
upper bound that there exists 6 > 0 such that a < x — 6 < x and

(27) A—e<f(x-0)<A.
Since f is monotonic, we have
(28) fix=90)<f(t)<A4 (x—d<t<x).

Combining (27) and (28), we see that
Ift)-A4]<e (x—6d<t<x).

Hence f(x—) = A.
The second half of (25) is proved in precisely the same way.
Next, if a < x < y < b, we see from (25) that

(29) f(x+) = inf f(z) = inf f(1).
x<t<b x<t<y
The last equality is obtained by applying (25) to (a, y) in place of (a, b).
Similarly,
(30) Sfy=) = sup f(t) = sup f(2).

a<t<y x<t<y

Comparison of (29) and (30) gives (26).
Corollary Monotonic functions have no discontinuities of the second kind.

This corollary implies that every monotonic function is discontinuous at
a countable set of points at most. Instead of appealing to the general theorem
whose proof is sketched in Exercise 17, we give here a simple proof which is
applicable to monotonic functions.

430 Theorem Let f be monotonic on (a, b). Then the set of points of (a, b) at
which f is discontinuous is at most countable.

Proof Suppose, for the sake of definiteness, that f is increasing, and
let E be the set of points at which f'is discontinuous.

With every point x of E we associate a rational number r(x) such
that

f(x=) <r(x) <flx+).
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Since x, < x, implies f(x;+) <f(x,—), we see that r(x,) # r(x;) if
X # X;.

We have thus established a 1-1 correspondence between the set £ and
a subset of the set of rational numbers. The latter, as we know, is count-
able.

431 Remark It should be noted that the discontinuities of a monotonic
function need not be isolated. In fact, given any countable subset E of (a, b),
which may even be dense, we can construct a function f, monotonic on (g, b),
discontinuous at every point of E, and at no other point of (a, b).

To show this, let the points of E be arranged in a sequence {x,},

n=1,2,3,.... Let {c,} be a sequence of positive numbers such that Zc,
converges. Define
@31 )= Y e, (a< x<b).

Xn<X

The summation is to be understood as follows: Sum over those indices n
for which x, < x. If there are no points x, to the left of x, the sum is empty;
following the usual convention, we define it to be zero. Since (31) converges
absolutely, the order in which the terms are arranged is immaterial.

We leave the verification of the following properties of f to the reader:

(a) fis monotonically increasing on (a, b);
(b) fis discontinuous at every point of E; in fact,

f(xn+) '.f(xn_) =Cy-
(¢) fis continuous at every other point of (a, b).

Moreover, it is not hard to see that f(x—) = f(x) at all points of (a, b). If
a function satisfies this condition, we say that f is continuous from the left. 1f
the summation in (31) were taken over all indices 7 for which x, < x, we would
have f(x+) =f(x) at every point of (a, b); that is, f would be continuous from
the right.

Functions of this sort can also be defined by another method; for an
example we refer to Theorem 6.16.

INFINITE LIMITS AND LIMITS AT INFINITY

To enable us to operate in the extended real number system, we shall now
enlarge the scope of Definition 4.1, by reformulating it in terms of neighborhoods.

For any real number x, we have already defined a neighborhood of x to
be any segment (x — &, x + 6).
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4.32 Definition For any real c, the set of real numbers x such that x > ¢ is
called a neighborhood of + co and is written (¢, + 00). Similarly, the set (— o0, c)
is a neighborhood of — 0.

4.33 Definition Let f be a real function defined on E < R. We say that
f(t)y=Aast—>x,

where 4 and x are in the extended real number system, if for every neighborhood
U of A there is a neighborhood V of x such that ¥ n E is not empty, and such
that f(t)e Uforallte VN E, t # x.

A moment’s consideration will show that this coincides with Definition
4.1 when 4 and x are real.

The analogue of Theorem 4.4 is still true, and the proof offers nothing
new. We state it, for the sake of completeness.

4.34 Theorem Let fand g be defined on E < R. Suppose

f@)—4, g@t)—-B ast—x.
Then
(@ f(t)—» A implies A =A.
®) (f+g)t)—>A+ B,
(¢) (f9)(r)— 4B,
@) (flg)t)— A/B,
provided the right members of (b), (c), and (d) are defined.
Note that 00 — 00, 0+ 00, 00/c0, 4/0 are not defined (see Definition 1.23).

EXERCISES
1. Suppose fis a real function defined on R! which satisfies
l.in; [fx+h)—fx—m]=0

for every x € R'. Does this imply that f'is continuous?
2, If fis a continuous mapping of a metric space X into a metric space Y, prove that

fE) <= f(E)
for every set E< X. (E denotes the closure of E.) Show, by an example, that

f(E) can be a proper subset of f(E).

3. Let fbe a continuous real function on a metric space X. Let Z(f) (the zero set of f)
be the set of all p € X at which f(p) = 0. Prove that Z(f) is closed.

4. Let fand g be continuous mappings of a metric space X into a metric space Y,
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.
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and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) =f(p)
for all p € E, prove that g(p) =f(p) for all pe X. (In other words, a continuous
mapping is determined by its values on a dense subset of its domain.)

If £ is a real continuous function defined on a closed set E < R', prove that there
exist continuous real functions g on R! such that g(x) = f(x) for all x € E. (Such
functions g are called continuous extensions of f from E to R'.) Show that the
result becomes false if the word “closed” is omitted. Extend the result to vector-
valued functions. Hint: Let the graph of g be a straight line on each of the seg-
ments which constitute the complement of E (compare Exercise 29, Chap. 2).
The result remains true if R! is replaced by any metric space, but the proof is not
so simple.

. If fis defined on E, the graph of f'is the set of points (x, f(x)), for x € E. In partic-

ular, if E is a set of real numbers, and f'is real-valued, the graph of fis a subset of
the plane.

Suppose E is compact, and prove thar f is continuous on E if and only if
its graph is compact.

. If E< X and if fis a function defined on X, the restriction of f to E is the function

g whose domain of definition is E, such that g(p) = f(p) for p € E. Define fand g
on R? by: f(0,0) =g(0,0) =0, f(x,y)=xy*/(x*+y*), g(x,y) =xy*/(x*+ y°)
if (x, y) # (0, 0). Prove that f is bounded on R?, that g is unbounded in every
neighborhood of (0, 0), and that f is not continuous at (0, 0); nevertheless, the
restrictions of both f and g to every straight line in R? are continuous!

. Let f be a real uniformly continuous function on the bounded set E in R'. Prove

that f'is bounded on E.
Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.

. Show that the requirement in the definition of uniform continuity can be rephrased

as follows, in terms of diameters of sets: To every & > 0 there exists a & >0 such
that diam f(E) < ¢ for all E = X with diam E < 3.
Complete the details of the following alternative proof of Theorem 4.19: If f'is not
uniformly continuous, then for some & > 0 there are sequences {p,}, {¢»} in X such
that dx(p., gn) = 0 but dy(f(p»), f(gn)) > . Use Theorem 2.37 to obtain a contra-
diction.
Suppose f is a uniformly continuous mapping of a metric space X into a metric
space Y and prove that {f(x,)} is a Cauchy sequence in Y for every Cauchy se-
quence {x,} in X. Use this result to give an alternative proof of the theorem stated
in Exercise 13.
A uniformly continuous function of a uniformly continuous function is uniformly
continuous.

State this more precisely and prove it.
Let E be a dense subset of a metric space X, and let f be a uniformly continuous
real function defined on E. Prove that f has a continuous extension from E to X
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14.

15

16.

17.

18.

19.

(see Exercise 5 for terminology). (Uniqueness follows from Exercise 4.) Hint: For
each pe X and each positive integer n, let V.(p) be the set of all g€ E with
d(p, q) < 1/n. Use Exercise 9 to show that the intersection of the closures of the
sets f(V1(p)), f(Va(p)), ..., consists of a single point, say g(p), of R'. Prove that
the function g so defined on X is the desired extension of f.

Could the range space R' be replaced by R*? By any compact metric space?
By any complete metric space? By any metric space ?
Let I = [0, 1] be the closed unit interval. Suppose fis a continuous mapping of /
into I. Prove that f(x) = x for at least one x e I.
Call a mapping of X into Y open if f(V) is an open set in ¥ whenever V is an open
set in X.

Prove that every continuous open mapping of R! into R! is monotonic.
Let [x] denote the largest integer contained in x, that is, [x] is the integer such
that x — 1 < [x] < x; and let (x) = x — [x] denote the fractional part of x. What
discontinuities do the functions [x] and (x) have?
Let f be a real function defined on (a, ). Prove that the set of points at which f
has a simple discontinuity is at most countable. Hint: Let E be the set on which
f(x—) <f(x+). With each point x of E, associate a triple (p, g, r) of rational
numbers such that
(@ f(x—) <p <f(x+),
(b) a<g <t < x implies f(t) <p,
(¢) x <t <r<bimplies f(?) > p.
The set of all such triples is countable. Show that each triple is associated with at
most one point of E. Deal similarly with the other possible types of simple dis-
continuities.
Every rational x can be written in the form x = m/n, where n > 0, and m and n are
integers without any common divisors. When x = 0, we take n = 1. Consider the
function f defined on R! by

(x irrational),

0

f)=(1 ( m)
- x==|.
n

n

Prove that f'is continuous at every irrational point, and that f has a simple discon-
tinuity at every rational point.
Suppose f is a real function with domain R! which has the intermediate value
property: If f(a) < ¢ < f(b), then f(x) = ¢ for some x between a and b.

Suppose also, for every rational r, that the set of all x with f(x) = r is closed.

Prove that f is continuous.

Hint: If x, = xo but f(x,) > r > f(x,) for some r and all n, then f(t,) =r
for some ¢, between x, and x,; thus #, - x,. Find a contradiction. (N. J. Fine,
Amer. Math. Monthly, vol. 73, 1966, p. 782.)
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20. If Eis a nonempty subset of a metric space X, define the distance from x € X to E

21.

by
pe(x) = inf d(x, 2).
eE

(@) Prove that pg(x) =0 if and only if x € E.
(b) Prove that pe is a uniformly continuous function on X, by showing that
| pe(x) — pe(»)| <d(x, y)

forall xe X, ye X.

Hint: pg(x) <d(x, z) <d(x, y) + d(», z), so that

pe(x) <d(x, y) + pe(y).

Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed.
Prove that there exists 8 >0 such that d(p,q) >3 if pe K, qe F. Hint: pris a

continuous positive function on K.
Show that the conclusion may fail for two disjoint closed sets if neither is

compact.

. Let A and B be disjoint nonempty closed sets in a metric space X, and define

23.

- PA(P)
/@) p4(p) + p s(P)

Show that f'is a continuous function on X whose range lies in [0, 1], that f(p) =0
precisely on 4 and f(p) =1 precisely on B. This establishes a converse of Exercise
3: Every closed set A = X is Z(f) for some continuous real fon X. Setting

V=408, W=/"'(}1),

show that ¥ and W are open and disjoint, and that 4 < V, B< W. (Thus pairs of
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets.
This property of metric spaces is called normality.)

A real-valued function f defined in (&, b) is said to be convex if

S(Ax+ (1 =) <M+ (1= D)

whenever a <x <b, a<y <b, 0 <A <1, Prove that every convex function is
continuous. Prove that every increasing convex function of a convex function is
convex. (For example, if f is convex, so is e’.)

(pe X).

If fis convex in (a, b) and if a <s <t < u < b, show that

f(t)—f(S)Sf(u) —f(S)Sf(u)—f(t).

t—ygs u—s u—t

Assume that fis a continuous real function defined in (a, b) such that

f(x-i-y) sf(x);--f(y)

2

for all x, y € (a, b). Prove that fis convex.
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25. If A< R* and B < R*, define A + B to be the set of all sums x +y with x€ 4,

Y€ B.
(a) If K is compact and C is closed in R*, prove that K + C is closed.

Hint: Take z¢ K+ C, put F=2z — C, the set of all z— y with ye C. Then
K and F are disjoint. Choose 8 as in Exercise 21. Show that the open ball with
center z and radius 8 does not intersect K + C.
(b) Let « be an irrational real number. Let C, be the set of all integers, let C, be
the set of all na with n € C,. Show that C, and C; are closed subsets of R' whose
sum C; + C; is not closed, by showing that C, + C; is a countable dense subset
of R'.

26. Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y, let
g be a continuous one-to-one mapping of Y into Z, and put 4(x)= g(f(x)) for
x€X.

Prove that f is uniformly continuous if / is uniformly continuous.

Hint: g~ has compact domain g(Y), and f(x) = g~ '(h(x)).

Prove also that fis continuous if /4 is continuous.

Show (by modifying Example 4.21, or by finding a different example) that
the compactness of Y cannot be omitted from the hypotheses, even when X and
Z are compact.



