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Limit Point

Every Br (p) fr so contains a point q# p such that

QE F-



Limit Point

Every Br Lp) fr so contains a point q't p such that
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Isolated point

Not a limit point

Closed set

Every limit point of E C Eff convergent sequence (Xn) in S X- lrmxn
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complement

Ec = Fp # E

Perfect set

E is closed and Vp E E are limit points

Dense set

FpEX is a limit point Of E or a point of E
⇒ Ers dense in X

Open cover

collection { Ga ) of open subsets of X S.t. Ec Va Ga

compact set
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