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Subsequences

Definition : Let Sn new be a sequence

Let nk be a strictly increasing seq in N
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infinite subsequence

TAM : Let Sn be any sequence, and talk

then
, Sn has a subsequence converge to +
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If these points are income, we can construct our subsequence

to contain only these points and
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THM: Every seq Csn) has a monotone subsequence

case 1 : there are infinitely many dominant
terms

&
Sh is dominant

if Fm> n Sh >Sm
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• Can construct the subsequence
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Case 2: there are finitely many dominant terms

↳ we can construct a monotonic increasing
sequence



THM: Every bounded seq has a convergent subseq
Find monotonic subsea→ bounded → convergent

Def : subsequence Limit
t is a subsequence limit if Sn has a subseathat

converges to t

Lrmsvpsn and LimMasn are subsea limits


