Feb 4
Subsequences
Defmution: Let $S_{n} n \in N$ be a sequence Let n_{k} be a strictly increasing seq in N

$$
n_{1}<n_{2}<n_{3} \ldots
$$

then, we define the subsequence as \qquad infinite subsequac

$$
t_{k}:=s_{n_{k}} \text { for } k=1,2 \ldots
$$

THM: Let S_{n} be any sequence, and $t \in \mathbb{R}$ then, s_{n} has a subsequence converge to t If and only if $\forall \varepsilon>0, A_{\varepsilon}=\left\{n \in \mathbb{N}| | s_{n}-t \mid<\varepsilon\right\}$ is infinite

Ex: \uparrow. if these pornos are mene, we can construct our subsequence thus converge

Feb 9

THM: Every seq $\left(S_{n}\right)$ has a monotone subsequence
Case 1: there are meinitery many dormant terms

Case 2: there are finely many dommant terms \leadsto we can construct a monotonic moreasiry sequence

THM: Every bounded sea has a convergent subseq Find monotonic subsea \rightarrow bounded \rightarrow convergent

Def: Subsequence Limit t is a subsequence limit if S_{n} has a subsea that converges to t

Limsupsn and Liminfsn are subsed limits

