January 19: Lecture 1

N: the Naturals	{1,2} operations: +, x has an ordering
Z: the "zintegers"	$\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ o special since of a Dependence: +, X, - I special since $1 \cdot \alpha \cdot \alpha$ example of a "ring"
Q: the rationals	$\{\frac{n}{m} n, m \in \mathbb{Z}, m \neq 0\}$ Operations: +, X, -, ÷ example of an "ordered field"
R: the reals	R > Q > Z > N satisfies completeness Axiom Every nonempty subset A of TR that is bounded above has a least upper bound sup (A) exists and is a real number
Induction	Show claim holds for $n=1$ Show holds for $n+1$ EX: 7/ 11 ⁿ -4 ⁿ n=1 11-4=7 7/7 charty divisible case for n is true $11^{n+1}-4^{n+1} = 11 \cdot 11^{n} + 4_{0}4^{n} = 7 \cdot 11^{n} + 4(11^{n}-4^{n})$

Rational Numbers	$r = \frac{c}{d} \in Q \text{ is a rational number and } r$ satisfies $c_{h} X^{h} + c_{h-i} X^{n-i} + + c_{0} = 0$ $c_{i} \in \mathbb{Z} C_{n} \neq 0 C_{0} \neq 0$ $then,$ $d C_{n} \qquad \textbf{x}$ $c C_{0}$ To determine if # is rational, check