Sequence and Limits

Sequence
a collection of numbers moldered by $n \in \mathbb{N}$ a function

$$
a_{1}, a_{2}, a_{3} \ldots \quad a_{n} \in \mathbb{R} \quad \forall n \in \mathbb{N}
$$

Limit

$$
\frac{\text { nit }}{\lim _{n \rightarrow \infty}} a_{n}=\alpha^{\text {snort version }}
$$

consider some $a_{1}, a_{2}, \ldots . a_{n}$ sequence, a_{i} converges to $\alpha \in \mathbb{R}$ if $\forall \varepsilon>0$, we find $N>0$ sit. for any $n>N \quad n \in \mathbb{N}$

$$
\left|a_{n}-\alpha\right|<\varepsilon
$$

Adverserral Examples \rightarrow No limit exists

PROVING THE LIMIT EXISTS WITH DEF
\rightarrow "guess" the limit
\rightarrow set $f(n)<\varepsilon$ solve for n for add, mu dive e te
\leadsto use $N=$ solution from $\hat{\gamma}$
1 show that definition of lime is satisfied with N we found

$$
\text { Ex: } \begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0 \\
& \frac{1}{n^{2}}<\varepsilon \\
& \frac{1}{\varepsilon}<n^{2} \\
& \frac{1}{\sqrt{\varepsilon}}<n \\
& N=\frac{1}{\sqrt{\varepsilon}}
\end{aligned}
$$

Lets take $N=\frac{1}{\sqrt{\varepsilon}}$, then any $n>N$, we have

$$
a_{n}<\varepsilon \text {, thus } \quad\left|a_{n}-0\right|<\varepsilon
$$

TOOLS TO COMPUTE LIMITS
THM: All convergent sequences are bounded If $\lim _{n \rightarrow \infty} a_{n}=\alpha$, then $\exists M>0$ st. $\left|a_{n}\right| \leq M \quad \forall h \in \mathbb{N}$
need both statements
THM: If $\lim _{n \rightarrow \infty} a_{n}=\alpha$, and $a_{n} \neq 0, \forall n \in \mathbb{N}$, and $\alpha \neq 0$ then, $\left(\frac{1}{a_{n}}\right)$ is a bounded sequence

MANY USEFUL THMS
Let $a_{n} \rightarrow \alpha, b_{n} \rightarrow \beta$ as $n \rightarrow \infty$

1) For any $k \in \mathbb{R}, \lim _{n \rightarrow \infty} k a_{n}=k \cdot \lim _{n \rightarrow \infty} a_{n}=k \alpha$
2) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=1 i m a_{n}+\lim b_{n}=\alpha+\beta$
3) $\lim _{n \rightarrow \infty} a_{n} b_{n}=\lim a_{n} \cdot \lim b_{n}=\alpha \beta$
4) If $b_{n} \neq 0 \quad$ on and $B \neq 0$, then $\lim \left(\frac{a_{n}}{b_{n}}\right)=\frac{\lim a_{n}}{\lim b_{n}}$
