Sequence and Limits

Adversence EXOMPLES > NO limit exists

PROVING THE LIMIT EXISTS WITH DEF OTHER OPTION TIMES for add, mul, dry erc Lo "guess" the limit Set F(n) < E solve for n Use N= solution from 1 is snow that definition of lim is satisfied with N we found

Ex: $\lim_{n \to \infty} \frac{1}{n^2} = 0$ $\lim_{n \to \infty} \frac{1}{n^2} = 0$ $\lim_{n \to \infty} \frac{1}{$

TOOLS TO COMPUTE LIMITS

THM: All convergent sequences are bounded.

need both statements

THM: If $\lim_{n \to \infty} a_n = \alpha$, and $a_n \neq 0$, $\forall n \in \mathbb{N}$, and $\alpha \neq 0$ then, $\left(\frac{1}{a_n}\right)$ is a bounded sequence

MANY USEFUL THMS

~

Let
$$a_n \rightarrow \alpha$$
, $b_n \rightarrow \beta$ as $n \rightarrow \infty$

1) For any KER, $\lim_{n \to \infty} k = k \cdot \lim_{n \to \infty} a_n = k \alpha$

2) $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = a + B$

3)
$$\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n = \alpha B$$

4) If
$$b_n \neq 0$$
 in and $B \neq 0$, then $\lim \left(\frac{a_n}{b_n}\right) = \frac{\lim a_n}{\lim b_n}$