January 2.8
Limit Proofs
EX: lim
$$\left(\frac{1}{bn}\right) = \frac{1}{limbn}$$

Find some N>0 s.t. $\forall e>0 \quad \left|\frac{1}{bn}-\frac{1}{p}\right| \leq \epsilon$ $\forall n>N$
 $\left|\frac{B-bn}{bn}\frac{p}{p}\right| < \epsilon$
Since $\frac{1}{bn}$ is a bounded sequence, $\left|\frac{1}{bn}\right| < c$ $\forall n$
 $\left(\frac{1}{bn}\left(\frac{B-bn}{p}\right)\right) < \left(\frac{B-bn}{p}\right) \cdot c$ $\forall n$
 $\left(\frac{B-bn}{p}\right) < c \in \epsilon$ usual socies by condition for limit
 $\left|\frac{B-bn}{p}\right| \cdot c < \epsilon$ usual socies by condition for limit
 $\left|\frac{B-bn}{p}\right| \cdot c < \epsilon$ usual socies by condition for limit
 $\left|\frac{B-bn}{p}\right| \cdot c < \epsilon$ usual socies by condition for limit
 $\left|\frac{B-bn}{p}\right| \cdot c < \epsilon$ usual socies by condition for limit
 $\left|\frac{B-bn}{p}\right| < \frac{\epsilon}{c} \cdot 1B1$ $\forall n$
since $bn \rightarrow B$, we know $|B-bn| \leq \epsilon$, ends use can saffing)
EX: $a_n = \frac{1}{n^p} = P > 0$ $\lim a_n = 0$
We need some $N > 0$, $\forall \epsilon > 0$ s.t.
 $\frac{1}{n^p} < \epsilon = \forall n > N$
 $\frac{1}{\epsilon} < n^n$
 $\left(\frac{1}{\epsilon}\right)^{\frac{1}{p}} < n$
thus, we take $N = \left(\frac{1}{\epsilon}\right)^{\frac{1}{p}}$ and thus we can show the original
stoppenent

Most lim proofs follow a similar format

Limits at infinity

Def: Let an be a seq aner Iman = 00 if 4M>0, =N>0 st. an> M 4N>N

Monotone sequences

(an) is increasing if antizian

(an) is decreasing if anti < an

THM: If an is increasing and bounded, then (a.) is convergent

THM: All bounded and monotone seq are convergent

(an) is an unbounded decreasing sequence, then $\lim_{n \to \infty} S_n = -\infty$

* IM an is always meaningful for monorane sequences * our for seq that done oscillate forever

limsup, lim inf

limsup an = lim Sh where Sh = sup { an | h > N } sup of the tail part

 $\lim_{N \to \infty} M = \lim_{N \to \infty} S_n \text{ where } S_n = \inf \{a_n \mid n > N \}$

THM: IF IMan is defined, then Imsupar = Iman = Immean

THM: If Imsupan = Imman in an is defined ?

Sn is a decreasing sequence, thus lim sup an is always defined, and equivalently for limitan

Cauchy Sequence

COUCHY IF VE>D, ZN>O st.

lan-aml<E An,m>N

THM: an is a cauciny seq. (=> an converges (=> limsup an = liminfor