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1 Topology

1.1 Basic Definitions

Definition 1.1. A set X is said to be a metric space if with any two points
p and q of X there is associated a real number d(p, q), called the distance from
p to q, such that

(a) d(p, q) > 0 if p ̸= q; d(p, p) = 0;

(b) d(p, q) = d(q, p);

(c) d(p, q) ≤ d(p, r) + d(r, q), ∀ r ∈ X.

where (c) is called the Triangle Equation.

Let X be a metric space. All points and sets discussed below are understood to
be elements and subsets of

Definition 1.2. A neighborhood of a point p is a set Nr(p) = {x ∈ X | d(x, p) <
r}. r is called the radius of Nr(p).

Definition 1.3. A point p is interior to (or is an interior point of) E if ∃ r >

0, s.t. Nr(p) ⊆ E.

Definition 1.4. A set E is open if every points in E is interior to E.

Definition 1.5. A point p is a limit point of E if ∀ r > 0, s.t. ∃ x ̸= p, s.t. x ∈
Nr(p) ∩ E

Definition 1.6. A set E is closed if every limit point of E is a point of E.

Remark. Another definition of closed set in Ross: A set E is closed if its
complement Ec (denoted by X\E in Ross) is open.

Definition 1.7. The complement of E (denoted by Ec in Rudin) is the set
of all points p ∈ X such that p /∈ E. i.e. Ec = {x ∈ X | x /∈ E}.

Definition 1.8. A set E is bounded if ∃ M ∈ R and q ∈ X, s.t. ∀ p ∈
E, d(p, q) < M .

Remark. Another definition of bounded sets: A set E is bounded if ∃ M ∈
R, s.t. ∀ p, q ∈ E, d(p, q) < M .

Definition 1.9. A set E is dense if every point of X is a limit point of E or
a point of E. i.e. X = E.
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Definition 1.10. The closure of a set E (denoted by E) is E = E ∩ E′. (We
use E′ to denote the set of limit points of E)

Remark. Another definition of closure in Ross: The closure E− of a set E is
the intersection of all closed sets containing E.

Definition 1.11. The boundary of E is the set E−\Eo, where Eo denotes
the set of interior points of E.

Definition 1.12. A set E is perfect if E is closed and every point of E is a
limit point of E. i.e. E = E′.

1.2 Basic Theorems

Theorem 1.1. Every neighborhood is open.

Theorem 1.2. If p ∈ E′, then ∀ r > 0, Nr(p) ∩ E is infinite.

Corollary 1.2.1. A finite set has no limit points.

Theorem 1.3. The union of any collection of open sets is open.

Corollary 1.3.1. The intersection of any collection of closed sets are closed.

Theorem 1.4. The intersection of finitely many open sets is open.

Corollary 1.4.1. The union of finitely many closed sets are closed.

Theorem 1.5. The set E is closed iff. E = E.

Theorem 1.6. The set E is closed iff. it contains the limit of every convergent
sequence of points in E.

Theorem 1.7. An element is in E iff. it is the limit of some convergent sequence
of points in E.

Theorem 1.8. x ∈ ∂E iff. x ∈ E ∩ Ec, where ∂E means the boundary of E.

Theorem 1.9. Suppose Y ⊂ X. A subset E is open relative to Y iff.
E = Y ∩G for some open subset G of X.

1.3 Compactness

Definition 1.13. An open cover of a set E in a metric space X is a collection
{Gα} of open subsets of X such that E ⊂ ∪αGα.
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Definition 1.14. A subset K of a metric space X is said to be compact if
every open cover of K contains a finite subcover.

Theorem 1.10. Suppose K ⊂ Y ⊂ X. Then K is compact relative to X

iff. K is compact relative to Y .

Remark. Comparing with Theorem 1.9, we can see that compactness can be
seen as a property of metric spaces.

Theorem 1.11. Compact subsets of metric spaces are closed.

Theorem 1.12. Closed subsets of compact sets are compact.

Corollary 1.12.1. If F is closed and K is compact, then F ∩K is compact.

Theorem 1.13. If {Kα} is a collection of compact subsets of a metric
space X such that in the intersection of every finite subcollection of {Kα}
is nonempty, then ∪Kα is nonempty.

Corollary 1.13.1. If {Kα} is a sequence of nonempty compact sets such that
Kn ⊃ Kn+1, then ∩∞

1 Kn is not empty.

Corollary 1.13.2. (Ross 13.10 Theorem) Let (Fn) be a decreasing sequence
[i.e. Fn ⊃ Fn+1] of closed bounded nonempty sets in Rk. Then F = ∩∞

n=1Fn is
also closed bounded and nonempty.

Theorem 1.14. Suppose E is an infinite subset of a set K. Then E has a limit
point in K iff. K is compact.

Remark. =⇒ can be found in 2.37 Theorem of Rudin. ⇐= can be found in
Excercise 26 of Rudin Chapter 2.

Theorem 1.15. Every k-cell is compact.

Theorem 1.16. If a set E in Rk has one of the following three properties,
then it has the other two:
(a) E is closed and bounded
(b) E is compact
(c) Every infinite subset of E has a limit point in E

Corollary 1.16.1. Every bounded infinite subset of Rk has a limit point in
Rk.
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1.4 Connectedness

Definition 1.15. The sets A and B are said to be separated if A ∩B = ∅ and
B ∩A = ∅.

Definition 1.16. A set E ⊂ X is said to be connected if E is not a union of
two nonempty separated sets.

Remark. Another definition on Ross about disconnected sets are rather com-
plicated with the concept of nonempty relatively-open subsets. So I leave it
out.

Theorem 1.17. A subset E of the real line R1 is connected iff. it has the
following property: If x ∈ E, y ∈ E, and x < z < y then z ∈ E.

Remark. More contents about compactness and connected sets are associated
with continuity. See the following sections.
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2 Continuity

2.1 Limits of Functions

Definition 2.1. Let X and Y be metric spaces; suppose E ⊂ X, f maps E

into Y , and p is a limit point of E. We write f(x) → q as x → p, or

lim
x→p

f(x) = q

if there is a point q ∈ Y with the following property: For every ϵ > 0 there
exists a δ > 0 such that

dY (d(x), q) < ϵ

for all points x ∈ E for which

0 < dX(x, p) < δ

Remark. This is called the two-sided limit by Ross. In Ross, there is limx→pE f(x) =

q iff. limx→p f(x) = q and f(x) = q. Then Ross defined two-sided and one-sided
limits based on this.

Theorem 2.1. limx→p f(x) = q iff. limn→∞ pn = q for every sequence {pn}
such that pn ̸= p and limn→∞ pn = p.

Corollary 2.1.1. If f has a limit at p, this limit is unique.

Theorem 2.2. Suppose limx→pf(x) = A and limx→pg(x) = B. Then

(a) lim
x→p

(f + g)(x) = A+B;

(b) lim
x→p

(fg)(x) = AB;

(c) lim
x→p

(f/g)(x) = A/B, ifB ̸= 0.

2.2 Continuous Functions

Definition 2.2. Let X and Y be metric spaces; suppose E ⊂ X, f maps E

into Y , and p ∈ E. Then f is said to be continuous at p if for every ϵ > 0

there exists a δ > 0 such that

dY (f(x), f(p)) < ϵ

for all points x ∈ E for which dX(x, p) < δ.
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Remark. Another definition of continuous functions in Ross: f is con-
tinuous at p iff. for every sequence (xn) of points in E converging to p,
limn→∞ f(xn) = f(p). This definition can be convenient in some proofs.

Theorem 2.3. Assume p ∈ E is also a limit point of E, then f is continuous
iff. limx→p f(x) = f(p).

Theorem 2.4. If f is a real-valued function continuous at x0, then |f | and kf

is also continuous at x0.

Theorem 2.5. If f, g are real-valued functions continuous at x0, then f +

g, fg, max(f, g), min(f, g) is also continuous at x0, and f/g is continuous at
x0 if g(x0) ̸= 0.

Theorem 2.6. If f is continuous at x0 and g is continuous at f(x0), then g ◦ f
is continuous at x0.

Theorem 2.7. A mapping f of a metric space X into a metric space Y is
continuous on X iff. f−1(V ) is open in X for every open set V in Y .

Corollary 2.7.1. A mapping f of a metric space X into a metric space Y is
continuous on X iff. f−1(C) is closed in X for every closed set C in Y .

Definition 2.3. f : X → Y . f is uniformly continuous on X if for
every ϵ > 0 there exists δ > 0 such that
p, q ∈ X and dX(p, q) < δ implies dY (f(p), f(q)) < ϵ.

2.3 Continuity and Compactness
Theorem 2.8. Suppose f is a continuous mapping of a compact metric
space Y. Then f(x) is compact.

Corollary 2.8.1. If f is a continuous mapping of a compact metric space X

into Rk then f(x) is closed and bounded. Thus f is bounded.

Corollary 2.8.2. Suppose f is a continuous real function on a com-
pact metric space X, then there exists points p, q ∈ X such that f(p) =

supx∈X f(x) and f(q) = infx∈X f(x). i.e. f attains its maximum and
minimum on X.
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Theorem 2.9. Suppose f is a continuous 1-1 mapping of a compact met-
ric space X onto a metric space Y . Then the inverse mapping f−1 is a
continuous mapping of Y onto X.

Theorem 2.10. Let f be a continuous mapping of a compact metric space X

into a metric space Y . Then f is uniformly continuous on X.

2.4 Continuity and Connectedness

Theorem 2.11. If f : X → Y is continuous, and if E is a connected subset of
X, then f(E) is connected.

Corollary 2.11.1. (Intermediate Value Theorem) Let f be a continuous
real function on the interval [a, b]. If f(a) < c < f(b), then there exists a
point x ∈ (a, b) such that f(x) = c.

Corollary 2.11.2. If f is a continuous real-valued function on an interval I,
then the set f(I) = {f(x) | x ∈ I} is also an interval or a single point.

2.5 Discontinuities

Definition 2.4. Let f be defined on (a, b). We write f(x+) = q (Rudin) or
limt→x+ f(t) = q (Ross) if f(tn) → q as n → ∞ for every sequence (tn) in (x, b)

such that tn → x. Similar for f(x−) = q.

Theorem 2.12. limt→x f(t) exists iff. f(x+) = f(x−) = limt→x f(t).

Definition 2.5. (Classification of Discontinuities)
1. Discontinuity of the first kind (simple discontinuity): f is discontinuous
at x, and f(x+) and f(x−) exist. It can be either f(x+) ̸= f(x−) or
f(x+) = f(x−) ̸= f(x).
2. Discontinuity of the second kind: f is discontinuous at x, and f(x+) or
f(x−) does not exist.

Theorem 2.13. If f is a monotonic function on (a, b), then f(x+) and f(x−)

exist at every point of x of (a, b). Thus monotonic functions have no disconti-
nuities of the second kind.
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2.6 Monotonic Functions

Theorem 2.14. (Partial Converse to the Intermediate Value Theorem)
If f is strictly increasing on an interval I and g(I) is an interval, then f is
continuous on I.

Corollary 2.14.1. If f is a continuous strictly increasing function on some
interval I, then f−1 is a continuous strictly increasing function on the interval
f(I).

Theorem 2.15. If f is a 1-1 continuous function on an interval I, then f is
strictly increasing or strictly decreasing.
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3 Sequence and Series of Functions

3.1 Basic Definitions and Theorems

Definition 3.1. We say {fn} converges to f pointwise on E, if

∀ x ∈ E, f(x) = lim
n→∞

fn(x)

If
∑

fn(x) converges for every x ∈ E, and if we define

f(x) =

∞∑
n=1

fn(x) (x ∈ E)

the function f is called the sum of the series
∑

fn.

Remark. Note that for double sequence (like (sm,n)), the limit processes
(limn→∞ and limm→∞) may not be interchanged without affecting the
result. And since to ask whether the limit of a sequence of continuous
functions is continuous is to ask whether

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

This proposition only holds under certain conditions.

Also note that a convergent series of continuous functions may have a
discontinuous sum.

Definition 3.2. We say {fn} converges uniformly on E to f if

∀ ϵ > 0, ∃ N ∈ N, s.t.

∀ n ≥ N and x ∈ E, |fn(x)− f(x)| ≤ ϵ

Theorem 3.1. (Cauchy Criterion) {fn} converges uniformly on E to f iff.

∀ ϵ > 0, ∃ N ∈ N, s.t.

∀ n,m ≥ N and x ∈ E, |fn(x)− fm(x)| ≤ ϵ

Theorem 3.2. Suppose {fn} is a sequence of functions defined on E, and
suppose

|fn(x)| ≤ Mn (x ∈ E, n = 1, 2, 3, · · · )

Then
∑

fn converges uniformly on E if
∑

Mn converges.
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3.2 Uniform Convergence and Continuity
Theorem 3.3. If fn → f uniformly on a set E in a metric space. Let x

be a limit point of E, then

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Corollary 3.3.1. If {fn} is a sequence of continuous functions on E, and
if fn → f uniformly on E, then f is continuous on E.

3.3 Uniform Convergence and Differentiation

Theorem 3.4. Suppose {fn} is a sequence of functions, differentiable on
[a, b] and such that |fn(x0) converges for some point x0 on [a, b]. If {f ′

n}
converges uniformly on [a, b], then {fn} converges uniformly on [a, b], to a
function f , and

f ′(x) = lim
n→∞

f ′
n(x)

3.4 Uniform Convergence and Integration

Theorem 3.5. Let α be monotonically increasing on [a, b]. Suppose fn ∈ R(α)

on [a, b], for n = 1, 2, 3, · · · , and suppose fn → f uniformly on [a, b]. Then
f ∈ R(α) in [a, b], and ∫ b

a

fdα = lim
n→∞

∫ b

a

fndα

(The existence of the limit is part of the conclusion)

Corollary 3.5.1. If fn ∈ R(α) on [a, b] and if

f(x) =

∞∑
n=1

fn(x) (a ≤ x ≤ b)

the series converging uniformly on [a, b], then∫ b

a

fdα =

∞∑
n=1

∫ b

a

fndα

In other words, the series may be integrated term by term.
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4 Differentiation

4.1 Derivatives

Definition 4.1. Let f be defined (and real valued) on [a, b]. For any x ∈ [a, b]

form the quotient

ϕ(t) =
f(t)− f(x)

t− x
(a < t < b, t ̸= x)

and define
f ′(x) = lim

t→x
ϕ(t)

provided this limit exists.

Theorem 4.1. Let f be defined on [a, b]. If f is differentiable at a point
x ∈ [a, b], then f is continuous at x.

Theorem 4.2. Suppose f, g are defined on [a, b] and are differentiable at a
point x ∈ [a, b]. Then f + g, fg, f/g are differentable at x, and

(a) (f + g)′(x) = f ′(x) + g′(x);

(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x);

(c)

(
f

g

)′

(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)
.

In (c), we assume of course that g(x) ̸= 0.

Theorem 4.3. (Chain Rule) If f is differentiable at x and g is differentiable at
f(x), then the composite function g ◦ f is differentiable at x and (g ◦ f)′(x) =
g′(f(x))f ′(x).

4.2 Mean Value Theorem

Definition 4.2. We say a real function f has a local maximum at a point p if
there exists δ > 0 such that f(q) ≤ f(p) for all q ∈ X with d(p, q) < δ. Local
minima are defined likewise.

Theorem 4.4. Let f be defined on [a, b]; if f has a local maximum or local
minimum at a point x ∈ (a, b), and if f ′(x) exists, then f ′(x) = 0.

Theorem 4.5. (Rolle’s Theorem) Let f be a continuous function on [a, b] that
is differentiable on (a, b) and satisfies f(a) = f(b). There exists [at least one] x
in (a, b) such that f’(x)=0.
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Theorem 4.6. If f and g are continuous real functions on [a, b] which are
differentiable in (a, b), then there is a point x ∈ (a, b) at which

[f(b)− f(a)]g′(x) = [g(b)− g(a)]f ′(x)

Corollary 4.6.1. If f is continuous real functions on [a, b] which are differen-
tiable in (a, b), then there exists a point x ∈ (a, b) at which

f(b)− f(a) = (b− a)f ′(x)

Theorem 4.7. Suppose f is differentiable in (a, b).
(a) ∀ x ∈ (a, b), f ′(x) ≥ 0 =⇒ f is monotonically increasing.
(b) ∀ x ∈ (a, b), f ′(x) = 0 =⇒ f is constant.
(c) ∀ x ∈ (a, b), f ′(x) ≤ 0 =⇒ f is monotonically decreasing.

4.3 Continuity of Derivatives

Theorem 4.8. (Intermediate Value Theorem for Derivatives) Suppose f is a
real differentiable function on [a, b] and suppose f ′(a) < λ < f ′(b). Then there
is a point x ∈ (a, b) such that f ′(x) = λ. A similar results holds if f ′(a) > f ′(b).

Corollary 4.8.1. If f is differentiable on [a, b], then f ′ cannot have any simple
discontinuities on [a, b].

Theorem 4.9. Let f be a 1-1 continuous function on an open interval I. If
f is differentiable at x0 ∈ I and if f ′(x0) ̸= 0, then f−1 is differentiable at
y0 = f(x0) and

(f−1)′(y0) =
1

f ′(x0)

4.4 L’Hospital’s Rule

Theorem 4.10. Let s signify a, a+, a−, ∞ or −∞ where a ∈ R, and suppose
f and g are differentiable functions for which the following limit exists:

lim
x→s

f ′(x)

g′(x)
= L

If
lim
x→s

f(x) = lim
x→s

g(x) = 0

or if
lim
x→s

|g(x)| = +∞
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then
lim
x→s

f(x)

g(x)
= L

Remark. Note that f, g must be defined and differnentiable near s and
g′(x) ̸= 0 near s.

4.5 Taylor’s Theorem

Theorem 4.11. Suppose f is a real function on [a, b], n is a positive integer,
f (n−1) is continuous on [a, b], and define

P (t) =

n−1∑
k=0

f (k)(α)

k!
(t− α)k

Then there exists a point x between α and β such that

f(β) = P (β) +
f (n)(x)

n!
(β − α)n
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