
Math 104 Final Review:

Midterm 2
5. Compactness and Series: (Ross 2.13, Rudin Chapter 2)

Lecture 11
● Topology of Metric Space: Let E⊂S any subset

a. p∈E is an interior point of E, ∃δ>0, such that
Bδ(p)={q∈S∣d(p,q)<δ}⊂E

b. Eo=the set of interior points of E
c. E⊂S is an open subset of S, if E=Eo, i.e∀p∈E , ∃δ>0, such that

Bδ(p)⊂E
● Important Properties: Let (S,d) be metric space

a. S, ø are open
b. If {Uα} is a collection of open sets, then UαGα is open
c. if {Gi} open, then ∩Gi open

● Complement: E⊂S is a closed subset of S, if the complement Ec=S∖E is open
a. S,  ø are closed
b. If {Fα} is a collection of closed sets, ∩αFα is closed
c. If {Fi} is a collection of closed sets, then UFi is closed

● De-Morgan Law: if A.B⊂S subsets, then
a. (AUB)c=Ac∩Bc
b. (A∩B)c=AcUBc

● Limit Points: Let E⊂S, P∈E is a limit point of E if and only if ∀δ>0,
Bδ(p)={q∈S∣d(p,q)<δ} intersects E non-empty, i.e.∃q∈E, d(q,p)<δ

● Closure: E⊂S, any subset, the closure of E is the intersection of all closed subsets
containing E,denoted by E−

a. proposition: E∪E′
b. Boundary: E−∖Eo

● Proposition 13.9: Let E be a subset of a metric space (S,d)
a. the set E is closed if and only if E=E−

b.E is closed if and only if it contains the limit of every convergent
sequence of points in E

c.An element is in E−if and only if it is the limit of some sequence of
points in E

d.A point is the boundary of E if and only if it belongs to the closure of
both E and its complement



● Isolated points: If p∈E and p is not a limit point of E, then p is called an
isolated point

● Perfect: E is perfect if E is closed and every point of E is a limit point of E
● Dense: E is dense in S if every point of S is a limit point of E or a point of E or

both.
● Rudin2.30: Suppose Y⊂X. A subset E of Y is open relative to Y if and only if

E=Y∩G for some open subset G of X
● Compact Set:

a. Open cover: Let (S,d) be a metric space, E⊂S, {Gα}is a collection of
open sets. We say {Gα}is an open cover of E if E⊂UαGα

b. Compact set: K⊂S is a compact subset, if for any open cover of K,
there exists a finite subcover, i.e if {Gα} is an open cover, then
α1,.....αn indices such that K⊂Gα1U.....Uαn

c. Sequentially Compact: E⊂S is sequentially compact if any sequence in
E has a convergent subsequence in E (the limit point is also in E)

● Theorem:
a. for any metric space (S,d), E⊂S, E compactE⟺E sequentially compact
b. (Heine-Borel theorem): consider Rn with Euclidean metric d(x,y)=∣x−y∣,

E⊂Rn is compact ⟺ E is closed and bounded
c. (Rudin) K⊂Y⊂X, the K is compact relative to Y if and only if K is compact

relative to X
d. (Rudin) Compact subsets of metric space are closed
e. (Rudin) Closed subsets of compact sets are compact

Lecture 12
● Series:

a. Infinite sum: an infinite sum of sequence (an) is defined as a1+a2+a3+...=∑𝑎𝑛
b. Convergence: a series converge to α if the corresponding partial sum converges to

α
c. Cauchy condition for series convergence:∀ϵ>0,∃N>0 such that
∀n,m>N,∣∑i=n+1ai∣<ϵ

d. Absolute Convergence: if ∑∣an∣<∞, we say ∑an converges absolutely
● Series Convergence Tests:

a. Comparison Test: suppose ∑an<∞, an>0, and bn∈R<an, then ∑bn<∞
suppose ∑an=∞, an>0, and bn∈R⪭an, then ∑bn=∞

b. Ratio Test: if limsup∣an+1/an∣<1, then ∑∣an∣ converges
if liminf∣an+1/an∣>1, then ∑∣an∣ diverges
Otherise, no information

c. Root Test: let ∑an be series, α=lim sup(∣an∣)^(1/n), then ∑an:



Converges absolutely if α<1
Diverges if α >1
α =1, no information

d. Alternating Series Test: let a1⪭a2⪭...be a monotone decreasing series, an⪭0.
And assuming liman=0. Then ∑(-1)^(n+1)an=a1-a2+a3-...converges. Moreover
the partial sums sn=∑(-1)^(k+1)ak satisfy ∣s-sn∣⪬an for all n

e. Integral Tests: if the terms are in ∑an are non-negative and f(n)=an is a decreasing
function on [1,∞), then let α=lim∫f(x)dx

If α=∞, then the series diverge
If α<∞, then the series converge
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6. Continuous functions and Compact functions
Lecture 13

● Continuous functions:
Function: A function from set A to set B is an assignment for each element α∈A,

an element f(α)∈B
a. Injective: (one-to-one) if ∀x,y∈A, x≠y, then f(x)≠f(y)
b.surjective: if β∈B, there exists at least one element α∈A such that

f(α)=β
c. bijective: both injective and surjective



● Limit of a function: suppose p∈set of limit points of E, we write f(x)→q(∈Y) as
● x→p or limx→pf(x)=q if lim ∀ϵ>0,∃δ>0 such that
∀x∈E,0<dX(x,p)<δ⟹dY(f(x),q)<ϵ

● Some Important theories from Rudin:
a. limx→pf(x)=q if and only if limn→∞f(pn)=q for every sequence (pn)

in E such that pn≠p, limn→∞(pn)=p
b. If f has a limit at point p, then it is unique

● Continuity of Functions:
a.continuity at a point: let (X,dx),(Y,dy) be metric spaces, E⊂X, f:E→Y,

p∈E, q=f(p). We say f is continuous at p, if ∀ϵ>0,∃δ>0 such that ∀x∈E with
dX(x,p)<δ⟹dY(f(x),q)<ϵ

b. If p∈E is also a limit point of E, then f is continuous at p⟺limx→p ​f(x)=f(p)
c.(X,dX),(Y,dY), f:X→Y. Then f is continuous ⟺ for every open set V⊂Y,

f−1(V) is open in X.
d. if:A→B is a function and E⊂A,F⊂B. The f(E)=F⟺E⊂f−1(F)

e.Let X,Y,Z be metric spaces and f:X→Y and g:Y→Z continuous functions.
We define h:X→Z by h(x)=g(f(x)). Then h is also continuous

f. If f,g:X→R continuous, then f+g,f−g,fg are continuous functions, and if
g(x)≠0 for any x∈X, then f/g​ is also continuous.

h. Let f:X→Rn,  with f(x)=(f1(x),f2(x),…,fn(x)). Then f is continuous
⟺fi​ is continuous.
● Compact Sets:
a. Propositions: K compact ⟹K bounded

K compact  ⟹K closed
E⊂X is closed, K is compact, E⊂K⟹E is compact.

b. Theorems: Compactness ⟺ Sequential Compactness
K compact⟺K closed and bounded.

● Continuous Maps and Compactness:
Three Definitions of Continuous Maps:
f is continuous if and only if ∀p∈X,∀ϵ>0,∃δ>0 such that f(Bδ(p))⊂Bϵ(f(p)
f is continuous if and only if ∀V⊂Y open, f−1(V) is open
f is continuous if and only if ∀xn→x in X, we have f(xn)→f(x) in Y
Some Theories from Rudin;

a. Suppose f is a continuous map from a compact metric space X to another compact metric
space Y, then f(X)⊂Y is compact.

b. Suppose f is a continuous real function on a compact metric space X, and
M=supp∈Xf(p), m=infp∈Xf(p).Then there exists point p,q∈X such that f(p)=M and
f(q)=m
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6. Uniform Continuity and Connectedness (Rudin Chap 2 and
Chap 4)

Lecture 15
● Uniform Continuous function: f: X→Y. Suppose ∀ϵ>0,∃δ>0 such that ∀p,q∈X with

dx(p,q)<δ, we have dY(f(p),f(q))<ϵ. We say f is a uniform continuous function.
● Connectedness: let X be a set. We say X is connected if ∀S⊂X and S is both open and

closed, then S has to be either X or ø.
● Propositions:

a. If f: X→Y is uniformly continuous and S⊂X subset with induced
metric, then the restriction f∣s:S→Y is uniformly continuous

b.X is connected if and only if X=U⊔V and U and V are both open,
then one of U,V is empty set.

c. If f:X→Y is continuous, if E⊂X is connected, then f(E) is connected
d. [0,1]⊂R is a connected subset.

Lecture 16
● Continued Connectedness: (some important conclusions from Rudin)

a.E is connected if and only if E cannot be written as A∪B when
A−∩B=ø and A∩B−=ø

b. E⊂R is connected⟺∀x,y∈E,x<y, we have [x,y]⊂E
c. Let f be a continuous real function on the interval [a,b]. If f(a)<f(b)

and if c is a number such that f(a)<c<f(b), there exists a point x∈[a,b] such that f(x)=c.
● Discontinuity: f:X→Y is discontinuous at x∈X if and only if x is a limit point of X and

limx→p​f(q) either does not exist or ≠f(x)
a.Right and Left Limit: Let f:(a,b)→R ∀x∈[a,b), we say f(x+)=q if for

all sequence(tn) in (x,b) that converge to x, we have limn f(tn)=q, and ∀x∈(a,b], we say
f(x−)=q if for all sequence (tn) in (a,x) that converge to x, we have limn f(tn)=q

● Discontinuity of First and Second Kind:
a.f:(a,b), x∈(a,b). Suppose f is discontinuous at x, we say f has a simple

discontinuity at xo, ​ if both f(xo+) and f(xo−) exist.
b.We say f has a discontinuity of second kind, if it is not a simple discontinuity.
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7. Monotonic functions and uniform convergence:
Lecture 17

● Monotonic Functions: A function f:(a,b)→R is monotone increasing if∀x>y, we
have

f(x)≥f(y). Similarly one can define monotone decreasing functions.、
● Some theorems from Rudin:

a.Suppose f:(a,b)→R is a monotone increasing function, then
∀x∈(a,b), the left limit f(x−) and the right limit f(x+) exists, satisfying
sup⁡{f(t)∣t<x}=f(x−)≤f(x+)=inf⁡{f(t)∣t>x}; and given x<y in (a,b), then f(x+)≤f(y−).

b.If f is monotone, then f(x) only has discontinuity of the simple
discontinuity.

c.If f is monotone, then there are at most countably many
discontinuities.
● Sequence and Convergence of Functions:

Pointwise Convergence of Sequence of Sequences: Let (xn)n​ be a sequence of
sequences, xn∈RN，we say (xn)n converges to x∈RN pointwise if∀i∈N, we have

limn→∞xni=xi​

Uniform Convergence of Sequence of Sequence: Let (xn)n​ be a sequence of sequences,

xn∈RN, we say xn→x uniformly if∀ϵ>0,∃N>0 such that∀n>N,sup⁡{∣xni−xi∣:i∈N}<ϵ
Pointwise Convergence of Sequence of Functions: Given a sequence of functions
fn∈ Map(R,R), we say fn converge to f pointwise if∀x∈R
limn→∞fn(x)=f(x)⟺n→∞∣fn(x)−f(x)∣=0  (examples: shrinking bumps)



Lecture 18
● Uniform Convergence:

Uniform Convergence of Sequence of Functions: Given a sequence of functions
(fn):X→Y, is said to converge uniformly to f:X→Y, if ∀ϵ>0,∃N>0 such that
∀n>N,∀x∈X, we have ∣fn(x)−f(x)∣<ϵ

● Some theories from Rudin
a.Suppose fn:X→R satisfies that ∀ϵ>0,∃N>0 such that

∀x∈X,∣fn(x)−fm(x)∣<ϵ,then fn​ converges uniformly (Uniform Cauchy ⟺ Uniform
Convergence).

b. (Weierstrass M-Test): Suppose f(x)=∑fn(x)∀x∈X, if ∃Mn>0
such that supx∣fn(x)∣≤Mn and ∑nMn<∞, then the partial sum FN(x)=∑fn(x) converges
to f(x) uniformly.

● Uniform Convergence and Continuity:
a.Suppose fn→f uniformly on set E in a metric space. Let x be a

limit point of E, and suppose that limt→xfn(t)=An. Then {An} converges and
t→xf(t)=limn→∞An. limt→xlimn→∞fn(t)=limn→∞limt→xfn(t).

b.If {fn} is a sequence of continuous functions on E, and if fn→f
uniformly on E, then f is continuous on E

c.Suppose K compact and
1.{fn} is a sequence of continuous functions on K, 2. {fn}​ converges pointwise to a
continuous function f(x) on K 3. fn(x)≥fn+1(x)∀x∈K,∀n=1,2,…n, then fn→f
uniformly on K.
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8. Derivative and Mean Value Theorem (Chapter 5 Rudin)
Lecture 21

● Derivative: Let f: [a,b] →R be a real valued function. Define ∀x∈[a,b],
f′(x)=limt→x(f(t)−f(x)/t−x). If f′(x) exists, we say f is differentiable at this point x.

● Proposition:



a. If f:[a,b]→R, f:[a,b]→R is differentiable at xo∈[a,b], then f is
continuous at x0, i.e. x→xo f(x)=f(xo)

b. Let f,g:[a,b]→R, f,g:[a,b]→R. Assume f,g are differentiable at
point xo∈[a,b], then

1. ∀c∈R, (cf)′(xo)=cf′(xo)
2. (f+g)′(xo)=f′(xo)+g′(xo)
3. (fg)′(xo)=f′(xo)g(xo)+f(xo)g′(xo)
4.  if g(xo)≠0, then (f/g)′(xo)=f′(xo)g(xo)−f(xo)g′(xo)/(g(xo))2
5.(Chain Rule): Suppose f:[a,b]→I⊂R and g:I→R. Suppose for

some xo∈[a,b], f(xo)=yo, yo∈R, f′(xo) and g′(yo)exists. Then, the composition
h=g∘f:[a,b]→R, h(x)=g(f(x)) is differentiable at xo , h′(xo)=g′(yo)f′(xo).

● Mean Value Theorem:
a. Local Maximum and Minimum: Let f:[a,b]→R, We say f has a

local maximum at point p∈[a,b], if ∃δ>0 and ∀x∈[a,b]∩Bδ(p), f(x)≤f(p).
b. Let f:[a,b]→R. If f has a local maximum or minimum at p∈(a,b),

and if f is differentiable at p, then f′(p)=0    (local maximum and local minimum can be taken at
the endpoints!)

c. Rolle's Theorem: Suppose f:[a,b]→R is a continuous function and f
is differentiable in (a,b). If f(a)=f(b), then there is some d∈(a,b) such that f′(d)=0.

Lecture 22
● Continued Mean Value Theorem: Let f,g:[a,b]→R be continuous function differentiable

on (a,b). Then ∃d∈(a,b) such that [f(a)−f(b)]g′(d)=[g(a)−g(b)]f′(d)
a. Rudin 5.10: Let f:[a,b]→R be a continuous function differentiable

on (a,b). Then ∃d∈(a,b) such that [f(b)−f(a)]=[b−a]f′(d)
b. Suppose f:[a,b]→R be continuous function,f′(x) exists for all

x∈(a,b), and ∣f′(x)∣≤M for some constant M.Then f is uniformly continuous.
c. Rudin 5.11: Suppose f is differentiable in (a,b), then

1.If f′(x)≥0 for all x∈(a,b), then f is monotonically increasing.
2.If f′(x)=0 for all x∈(a,b), then f is constant.
3.If f′(x)≤0 for all x∈(a,b), then f is monotonically decreasing.

● Intermediate Value Theorem: Assume f is differentiable over [a,b] with f′(a)<f′(b).
Then from each λ∈(f′(a),f′(b)), there exists a d∈(a,b) such that f′(d)=λ′

● L'Hospital's Rule: Suppose f and g are real and differentiable in (a,b), and g′(x)≠0 for all
x∈(a,b), where −∞≤a<b≤∞. Suppose f′(x)/g′(x)→A as x→a. Then if f(x)→0 and g(x)→0
as x→a, or if g(x)→+∞ as x→a, then f(x)/g(x)→A as x→a.
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9. Integrations and Differentiations:
Lecture 23

● Higher Order Derivatives: If f′(x)′ is differentiable at xo, we define f“(xo)=(f′)′(xo).
● a.Smooth Function: f(x) is a smooth function on (a,b)if
∀x∈(a,b), ∀k∈{1,2,…},f(k)(x) exists.

● Taylor Theorem: Suppose f is a real function on [a,b]. n is a positive integer, f(n−1) is
continuous on [a,b], f(n)(t) exists for every t∈(a,b). Let α,β be distinct points of [a,b],,
and define P(t)=∑(f(k)(α)/k!)(t−α)^k. Then there exists a point x between α and β, such
that f(β)=P(β)+(f(n)(x)/n!)(β−α)^n

a.Taylor Series for a Smooth Function: If f is a smooth function on
(a,b), and α∈(a,b), we can form the Taylor Series: Pα(x)=∑k=(f(k)(α)/k!)(x−α)^k.

Lecture 24 (Rudin Chapter 3 and 6)

● Taylor Series: Let N→∞, we write Pxo(x)=∑(f(n)(xo)/n!)(x−xo)^n
a. Consider power series ∑ncnz^n, put α=limn→∞sup⁡∣cn∣^1/n. Let R=1/α, then the

series is convergent if ∣z∣<R and the series is divergent if ∣z∣>R. Such R is
called the radius of convergence.

● Riemann Integral:
● a.Partition: let [a,b]⊂R be a closed interval. A partition P of [a,b] is finite set of number

in [a,b]: a=x0≤x1≤…≤xn= b.Define Δxi=xi−xi−1



● b.U(P,f) and L(P,f): Given f:[a,b]→R bounded, and partition  p={x0≤x1≤…≤xn}, we
define U(P,f)=∑ΔxiMi​ where Mi=sup⁡{f(x),x∈[xi−1,xi]}; L(P,f)=∑Δximi where
mi=inf⁡{f(x),x∈[xi−1,xi]}

● c. U(f) and L(f): Define U(f)=infP​U(P,f) and L(f)=supP​L(P,f).Since f is bounded, hence
∃m,M∈R such that m≤f(x)≤M for all x∈[a,b], then ∀P partition of [a,b],
U(P,f)≤∑ΔxiM=M(b−a),and L(P,f)≥m(b−a), and m(b−a)≤L(P,f)leqU(P,f)≤M(b−a).

● Riemann Integrable: We say a function f is Riemann integrable if U(f)=L(f)
a.If f is continuous, then f is Riemann integrable.
b.If f is monotone, then f is Riemann integrable.
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Lecture 25 (Continued Chapter 6)

● Stieltjes Integrals:
● a. Weight Function: Let α:[a.b]→R be a monotone increasing function, then α could be

referred to as a weight function for Stieltjes Integral. Δαi=α(xi)−α(xi−1)​
● b.Notions: we define U(P,f,α)=∑MiΔαi and L(P,f,α)=∑miΔαi



● c.Stieltjes Integrable: If U(f,α)=L(f,α),we say f is integrable with respect to α and write
f∈R(α) on [a,b].

● d.Let P and Q be 2 partitions of [a,b], then P and Q can be identified as a finite subset of
[a,b]. We say Q is a refinement of P if P⊂Q as subsets of [a,b].

● e.Common Refinement: Let P1​ and P2 be 2 partitions of [a,b, then P1∪P2 is the
common refinement of P1 and P2

● Rudin Theorem:
● a.If P′ is a refinement of P, then L(P′,f,α)≤L(P,f,α) and U(P′,f,α)≤U(P,f,α)
● b.L(f,α)≤U(f,α)
● c.f∈R(α)⟺∀ϵ>0,∃P partition such that U(P,f,α)−L(P,f,α)<ϵ
● d.
● 1.If c holds for P, then for any refinement Q of P,U (Q,f,α)−L(Q,f,α)<ϵ and
● 2.If c holds for P, and let si,ti∈[xi−1,xi]∀i=1,2,…,n, then ∑∣f(si)−f(ti)∣Δαi<ϵ
● 3. If f∈R(α) and the above holds, then ∑∣f(si)Δαi−∫fdα∣<ϵ
● e. If f is continuous on [a,b], then f∈R(α) on [a,b]
● f. If f  is monotonic on [a,b] and α is continuous, then f∈R(α)

Lecture 26 (Continued Chapter 6 Rudin)

● More on Integrations:
● a.If f is discontinuous only at finitely many points, and α is continuous where f is discontinuous, then

f∈R(α)
● b. Let f:[a,b]→[m,M] and ϕ:[m,M]→R is continuous. If f is integrable with respect to α,

then h=ϕ∘f is integrable with respect to α
● 1. If f1,f2∈R(α)​and c∈R, then f1+f2,cf1∈R(α),and

∫f1+f2​dα=∫f1​dα+∫f2​dα, ∫cf1dα=c∫f1dα.
● 2. If f,g∈R(α) and f(x)≤g(x)，∀x∈[a,b], then ∫fdα≤∫gdα
● 3.If f∈R(α) on [a,c], then f∈R(α) on [a,b] and on [b,c] if a<c<b,

and ∫acfdα=∫abfdα+∫bcfdα
● 4. If f∈R(α) on [a,b], and ∣f(x)∣≤M on [a,b], then
∣∫abfdα∣≤M(α(b)−α(a))a

● 5.If f∈R(α1) and f∈R(α2) and let c be a positive constant, then
f∈R(α1+α2) and f∈R(cα1) with ∫fd(α1+α2)=∫fdα1+∫fdα2​​ and ∫fd(cα1)=c∫fdα1​

● c.If f,g∈R(α), then fg∈R(α).If f∈R(α), then ∣f∣∈R(α) and ∣∫abfdα∣≤∫ab∣f∣dα.
● d. Unit Step function: The unit step function I is defined by I(x)=0 if x≤0 and I(x)=1 if

x>0.
● e. If f:[a,b]→Rf:[a,b]→R and is continuous at s∈[a,b] and α(x)=I(x−s), then ∫fdα=f(s)



● f.Suppose cn≥0,​ for n=1,2,3,…∑cn<∞,​{sn} is a sequence of distinct points in (a,b), and
○ α(x)=∑cnI(x−sn). Let f be continuous on [a,b], then∫fdα=∑cnf(sn)


