Math 104 Final Review:

Midterm 2
5. Compactness and Series: (Ross 2.13, Rudin Chapter 2)

Lecture 11

Topology of Metric Space: Let EC S any subset
a. p€<E is an interior point of E, 30>0, such that
BO(P)={q=S | d(p.q)<5} CE
b. FEo=the set of interior points of E
c. ECSisan open subset of S, if E=Eo, i.e VpEE, 30>0, such that
Bi(p)—E
Important Properties: Let (S,d) be metric space
a. S, o are open
b. If {Ua} is a collection of open sets, then UaGa is open
c. if {Gi} open, then NGi open
Complement: ECS is a closed subset of S, if the complement Ec=S\E is open
a. S, o are closed
b. If {Fa/ is a collection of closed sets, NaFa is closed
c. If {Fi} is a collection of closed sets, then UFi is closed
De-Morgan Law: if A.B C S subsets, then
a. (AUB)c=AcNBc
b. (ANB)c=AcUBc
Limit Points: Let ECS, PEE is a limit point of E if and only if V >0,
Bd(p)={qE S| d(p,q)<d} intersects E non-empty, i.e. 3qEE, d(q,p)<d
Closure: EC S, any subset, the closure of E is the intersection of all closed subsets
containing E,denoted by E-

a. proposition: EU E’
b. Boundary: £-\Eo
Proposition 13.9: Let E be a subset of a metric space (S,d)
a. the set E is closed if and only if E=E-
b.E is closed if and only if it contains the limit of every convergent
sequence of points in E
c.An element is in E-if and only if it is the limit of some sequence of
points in E
d.A point is the boundary of E if and only if it belongs to the closure of
both E and its complement



e Isolated points: If p=E and p is not a limit point of E, then p is called an
isolated point
Perfect: E is perfect if E is closed and every point of E is a limit point of E

Dense: E is dense in S if every point of S is a limit point of E or a point of E or
both.
e Rudin2.30: Suppose Y C X. A subset E of Y is open relative to Y if and only if
E=YNG for some open subset G of X
o Compact Set:
a. Open cover: Let (S,d) be a metric space, ECS, {Ga}is a collection of
open sets. We say {Ga}is an open cover of E if EC UaGa
b. Compact set: KC S is a compact subset, if for any open cover of K,
there exists a finite subcover, i.e if {Ga} is an open cover, then
ol,.....an indices such that KC Ga/U.....Uan
c. Sequentially Compact: ECS is sequentially compact if any sequence in
E has a convergent subsequence in E (the limit point is also in E)
e Theorem:
for any metric space (S,d), ECS, E compactE<E sequentially compact

c P

. (Heine-Borel theorem): consider Rn with Euclidean metric d(x,y)=|x—y|,
E CRn is compact < E is closed and bounded
c. (Rudin) KCY CX, the K is compact relative to Y if and only if K is compact
relative to X
d. (Rudin) Compact subsets of metric space are closed
e. (Rudin) Closed subsets of compact sets are compact
Lecture 12
° ri
a. Infinite sum: an infinite sum of sequence (an) is defined as al+a2+a3+...=).an
b. Convergence: a series converge to « if the corresponding partial sum converges to
o
c. Cauchy condition for series convergence: V >0, 3 N>0 such that
Vn,m>N, | Yi=n+lail|<e
d. Absolute Convergence: if ¥ | an|<co, we say Y an converges absolutely
° ri nvergence T
a. Comparison Test: suppose Y an<oo, an>0, and bn & R<an, then ) bn<co
suppose Y an=co, an>0, and bn € R2an, then Y bn=00
b. Ratio Test: if limsup |an+1/an|<1, then 3 |an| converges
if liminf|an+1/an|>1, then Y |an| diverges
Otherise, no information
c. Root Test: let Yan be series, a=lim sup(|an|)*(1/n), then Yan:



Converges absolutely if a<l
Diverges if a >1
o =1, no information
d. Alternating Series Test: let al=a22...be a monotone decreasing series, an=0.
And assuming liman=0. Then ) (-1)"(n+1)an=al-a2+a3-...converges. Moreover
the partial sums sn=y(-1)"(k+1)ak satisfy |s-sn|<an for all n
e. Integral Tests: if the terms are in ) an are non-negative and f(n)=an is a decreasing
function on [1,00), then let a=lim[f(x)dx
If o=, then the series diverge
If a<co, then the series converge
Homework 6
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6. Continuous functions and Compact functions

Lecture 13
e (Continuous functions:

Function: A function from set A to set B is an assignment for each element a € A,
an element f(a) €B

a. Injective: (one-to-one) if Vx,y € A, x#y, then f(x)£{(y)
b.surjective: if f< B, there exists at least one element o= A4 such that
Ao)=p

c. bijective: both injective and surjective



Limit of a function: suppose p  set of limit points of E, we write fix)—¢g(<Y) as
x—p or limx—pf(x)=q if lim V>0, 35>0 such that
V x €E,0<dX(x,p)<6=dY (f(x),q)<e
Some Important theories from Rudin:

a. limx—pf(x)=q if and only if limn—oof(pn)=q for every sequence (pn)

in E such that pn#p, limn—oo(pn)=p

b. If fhas a limit at point p, then it is unique
Continuity of Functions:

a.continuity at a point: let (X,dx),(Y,dy) be metric spaces, EC X, ffE—-Y,
pEE, g=f(p). We say fis continuous at p, if V >0, 36>0 such that Vx €E with
dX(x,p)<6=dY (f(x),q)<e

b. If p<E is also a limit point of E, then f is continuous at pelimx—p f(x)=Ap)
¢.(X,dX),(Y,dY), f:X—Y. Then f is continuous < for every open set VCY,

f=1(V) is open in X.

d. if:A—B is a function and EC A,F CB. The f(E)=F<Ecf-1(F)
e.Let X,Y,Z be metric spaces and f:X—Y and g:Y—Z continuous functions.

We define h: X—Z by h(x)=g(f(x)). Then h is also continuous

f. If f,g: X—R continuous, then f+g,f—g,fg are continuous functions, and if

g(x)#0 for any x € X, then f/g is also continuous.

h. Let f:X—Rn, with f(x)=(f1(x),f2(x),...,fn(x)). Then f is continuous

&l is continuous.

a.

Compact Sets:
Propositions: K compact =K bounded

K compact =K closed
EC X is closed, K is compact, EC K=E is compact.

. Theorems: Compactness < Sequential Compactness

K compacteK closed and bounded.
Continuous Maps and Compactness:

Three Definitions of Continuous Maps:

fis continuous if and only if Vp&E X,V e>0, 338>0 such that f(B3(p))  Be(f(p)
f'is continuous if and only if V'V CY open, f~1(V) is open

f is continuous if and only if V' xn—x in X, we have f(xn)—f(x) in Y

Some Theories from Rudin;

Suppose f is a continuous map from a compact metric space X to another compact metric
space Y, then f(X)CY is compact.

Suppose f'is a continuous real function on a compact metric space X, and

M=supp € Xf(p), m=infp € Xf(p).Then there exists point p,q < X such that f(p)=M and

f(q)=m



Homework 7

6. Uniform Continuity and Connectedness (Rudin Chap 2 and
Chap 4)
Lecture 15

Uniform Continuous function: f: X—Y. Suppose V >0, 30>0 such that V p,q =X with
dx(p,q)<d, we have dY(f(p),f(q))<e. We say f is a uniform continuous function.

Connectedness: let X be a set. We say X is connected if VSCX and S is both open and

closed, then S has to be either X or o.
Propositions:

a. If f: X—>Y is uniformly continuous and S C X subset with induced
metric, then the restriction f|s:S—Y is uniformly continuous

b.X is connected if and only if X=UUV and U and V are both open,
then one of U,V is empty set.

c. If f:X—Y is continuous, if EC X is connected, then f(E) is connected

d. [0,1]CR is a connected subset.

Lecture 16

Continued Connectedness: (some important conclusions from Rudin)

a.E is connected if and only if E cannot be written as A U B when
A—NB=g and ANB—=¢
b. ECR is connected=Vx,yeE, x<y, we have [x,y] CE
c. Let f be a continuous real function on the interval [a,b]. If f(a)<f(b)
and if ¢ is a number such that f(a)<c<f(b), there exists a point x &[a,b] such that f(x)=c.
Discontinuity: f:X— 7Y is discontinuous at x & X if and only if x is a limit point of X and

limx—pf(q)_either does not exist or #f(x)

a.Right and Left Limit: Let f:(a,b)>R V' xE[a,b), we say f(x+)=q_.if for
all sequence(tn) in (x,b) that converge to x, we have limn f(tn)=q, and V' x < (a,b], we say
f(x—)=q if for all sequence (tn)_in (a,x) that converge to x, we have limn f(tn)=q
Discontinuity of First and Second Kind:

a.f:(a,b), x = (a,b). Suppose fis discontinuous at x, we say f has a simple
discontinuity at xo, if both f(xo+) and f(xo—) exist.
b.We say f has a discontinuity of second kind, if it is not a simple discontinuity.
Homework 8
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7. Monotonic functions and uniform convergence:
Lecture 17

e Monotonic Functions: A function f:(a,b)—R is monotone increasing if V' x>y, we

have
f(x)>f(y). Similarly one can define monotone decreasing functions.,
e Some theorems from Rudin:
a.Suppose f:(a,b)—R is a monotone increasing function, then
V xE(a,b), the left limit f(x—) and the right limit f(x+) exists, satisfying
sup { f(t)It<x }=f(x—)<f(x+)=inf{{(t)It>x}; and given x<y in (a,b), then f(x+)<f(y—).
b.If f is monotone, then f(x) only has discontinuity of the simple
discontinuity.
c.If fis monotone, then there are at most countably many
discontinuities.
e Sequence and Convergence of Functions:

Pointwise Convergence of Sequence of Sequences: Let (xn)n be a sequence of
sequences, xn € RN, we say (xn)n converges to X & RN _pointwise if V1< N, we have
limn—ooxni=xi

Uniform Convergence of Sequence of Sequence: Let (Xn)n be a sequence of sequences,
xn € RN, we say Xn—X uniformly if V' €>0, 3 N>0 such that V' n>N,sup {Ixni—xil:ieN}<e
Pointwise Convergence of Sequence of Functions: Given a sequence of functions
fne Map(R,R), we say fn converge to f pointwise if VxER
limn—oofn(x)=f(x)=n—oolfn(x)—f(x)I=0 (examples: shrinking bumps)



Lecture 18
e Uniform Convergence:

Uniform Convergence of Sequence of Functions: Given a sequence of functions
(fn):X—Y, is said to converge uniformly to f:X—Y, if ¥V €>0, 3N>0 such that
Vn>N,VxEX, we have |fn(x)—f(x) | <e

e Some theories from Rudin

a.Suppose fn:X—R satisfies that V €>0, 3N>0 such that
VxEX, | fn(x)—fim(x) | <¢,then fn converges uniformly (Uniform Cauchy & Uniform
Convergence).

b. (Weierstrass M-Test): Suppose f(x)=> fn(x) VxEX, if 3Mn>0
such that supx | fn(x) | <Mn and Y nMn<co, then the partial sum FN(x)=Y fn(x) converges
to f(x) uniformly.

e Uniform Convergence and Continuity:

a.Suppose fn—f uniformly on set E in a metric space. Let x be a
limit point of E, and suppose that limt—xfn(t)=An. Then {An} converges and
t—xf(t)=limn—owAn. limt—xlimn—oofn(t)=limn—oolimt—xfn(t).

b.If {fn} is a sequence of continuous functions on E, and if fn—f
uniformly on E, then f is continuous on E

c.Suppose K compact and
1.{fn} is a sequence of continuous functions on K, 2. {fn} converges pointwise to a
continuous function f(x) on K 3. fn(x)>fn+1(x) VxEK, Vn=1,2,...n, then fn—f
uniformly on K.

_Homework 9
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8. Derivative and Mean Value Theorem (Chapter 5 Rudin)

Lecture 21
e Derivative: Let f: [a,b] —R be a real valued function. Define V' xE[a,b],
f'(x)=limt—x(f(t)—f(x)/t—x). If f'(x) exists, we say fis differentiable at this point x.
e Proposition:



a. If f:[a,b] >R, fi[a,b]—>R is differentiable at xo [a,b], then fis
continuous at x0, i.e. x—xo f(x)=f(x0)
b. Let f,g:[a,b]—R, f,g:[a,b]—>R. Assume f,g are differentiable at
point xo & [a,b], then
1. VcER, (cf)'(x0)=cf(x0)
2. (f+g)'(x0)=f'(x0)+g'(x0)
3. (fg)'(xo)=f'(x0)g(x0)+f(x0)g'(x0)
4. if g(x0)#0, then (f/g)'(x0)=f"(x0)g(x0)—f(x0)g'(x0)/(g(x0))2
5.(Chain Rule): Suppose f:[a,b] >I R and g:[—R. Suppose for
some x0 & [a,b], f(x0)=yo, yoER, f'(x0) and g'(yo)exists. Then, the composition
h=ge°f:[a,b] >R, h(x)=g(f(x)) is differentiable at xo , h'(x0)=g'(yo)f'(x0).
Mean Value Theorem:
a. Local Maximum and Minimum: Let f:[a,b] >R, We say f has a
local maximum at point p € [a,b], if 98>0 and ¥V x < [a,b]NB3(p), f(x)<f(p).
b. Let f:[a,b]—R. If f has a local maximum or minimum at p < (a,b),

and if f is differentiable at p, then f'(p)=0 (local maximum and local minimum can be taken at

the endpoints!)

c. Rolle's Theorem: Suppose f:[a,b] =R is a continuous function and f

is differentiable in (a,b). If f(a)=f(b), then there is some d =(a,b) such that '(d)=0.

Lecture 22
Continued Mean Value Theorem: [ et f,g:[a,b] >R be continuous function differentiable
on (a,b). Then 9d<(a,b) such that [f(a)—f(b)]g'(d)=[g(a)—g(b)]f'(d)
a. Rudin 5.10: Let f:[a,b]—R be a continuous function differentiable
on (a,b). Then 9d<(a,b) such that [f(b)—f(a)]=[b—a]f'(d)
b. Suppose f:[a,b] >R _be continuous function,f'(x) exists for all
xE(a,b), and |f(x)|<M for some constant M. Then f is uniformly continuous.
c. Rudin 5.11: Suppose f'is differentiable in (a,b), then
LIf f(x)>0 for all x<(a,b), then f is monotonically increasing.
2.If f(x)=0 for all x<(a,b), then fis constant.
3.Iff(x)<0 for all x&(a,b), then f is monotonically decreasing.
Intermediate Value Theorem: Assume f is differentiable over [a,b] with f'(a)<f'(b).
Then from each A< (f'(a),f'(b)), there exists a d = (a,b) such that f'(d)=\"
L'Hospital's Rule: Suppose f and g are real and differentiable in (a,b), and g'(x)#0 for all
x & (a,b), where —o<a<b=<oo. Suppose f'(x)/g'(x)—A as x—a. Then if f(x)—0 and g(x)—0
as x—a, or if g(x)—+oo as x—a, then f(x)/g(x)—A as x—a.
Homework 10
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9. Integrations and Differentiations:

Lecture 23
Higher Order Derivatives: If f'(x)’is differentiable at xo, we define f*“(x0)=(f")'(x0).
° a.Smooth Function: f(x) is a smooth function on (a,b)if
VxE(ab), VKE {1,2,...},f(k)(x) exists.
Taylor Theorem: Suppose f is a real function on [a,b]. n is a positive integer, f(n—1) is
continuous on [a,b], f(n)(t) exists for every t&(a,b). Let o, be distinct points of [a,b],,
and define P(t)=) (f(k)(a)/k!)(t—a)"k. Then there exists a point X between a and 3, such
that f(B)=P(B)+(f(n)(x)/n!)(B~a)"n
a.Taylor Series for a Smooth Function: If f is a smooth function on
(a,b), and a & (a,b), we can form the Taylor Series: Pa(x)=) k=(f(k)(a)/k!)(x—a)"k.
Lecture 24 (Rudin Chapter 3 and 6)

Taylor Series: Let N—oo, we write Pxo(x)=) (f(n)(x0)/n!)(x—x0)"n
a. Consider power series ) ncnz”*n, put o=limn—oosuplcn/*1/n. Let R=1/a, then the
series is convergent if |z|<R and the series is divergent if [z|>R. Such R is
called the radius of convergence.
Riemann Integral:
a.Partition: let [a,b] R be a closed interval. A partition P of [a,b] is finite set of number
in [a,b]: a=x0<x1<...<xn= b.Define Axi=xi—xi—1



e Db.U(Pf) and L(P,f): Given f:[a,b] >R bounded, and partition p={x0<x1<...<xn}, we
define U(P,f)=) AxiMi where Mi=sup {f(x),xe[xi—1,xi]}; L(P,f)=)> Aximi where
mi=inf{f(x),xe[xi—1,xi]}

e c. U(f) and L(f): Define U(f)=infPU(P,f) and L(f)=supPL(P,f).Since f is bounded, hence
I m,M &R such that m<f(x)<M for all x & [a,b], then V P partition of [a,b],

U(P,H<> AxiM=M(b—a),and L(P,f)>m(b—a), and m(b—a)<L(P,f)leqU(P.)<M(b—a).

e Riemann Integrable: We say a function f is Riemann integrable if U(f)=L(f)

a.If f is continuous, then f is Riemann integrable.
b.If f is monotone, then f is Riemann integrable.
Homework 11
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Lecture 25 (Continued Chapter 6)

e Stieltjes Integrals:
a. Weight Function: Let a:[a.b]—R be a monotone increasing function, then a could be

referred to as a weight function for Stieltjes Integral. Aai=o(xi)—a(xi—1)
e b.Notions: we define U(P,f,a)=) MiAai and L(P,f,a)=) miAai



c.Stieltjes Integrable: If U(f,a)=L(f,a),we say f is integrable with respect to a and write
fER(a) on [a,b].

d.Let P and Q be 2 partitions of [a,b], then P and Q can be identified as a finite subset of
[a,b]. We say Q is a refinement of P if PC Q as subsets of [a,b].

e.Common Refinement: Let P1 and P2 be 2 partitions of [a,b, then P1 UP2 is the
common refinement of P1 and P2

Rudin Theorem:

a.If P’ is a refinement of P, then L(P’,f,a)<L(P,f,a) and U(P’,f,a)<U(P,f,a)
b.L(f,0)<U(f,a)

c.fER(a)=Ve>0,dP partition such that U(P,f,a)—L(P,f,a)<e

d.

1.If ¢ holds for P, then for any refinement Q of P,U (Q,f,a)—L(Q,f,a)<e and

2.If ¢ holds for P, and let si,ti € [xi—1,xi] Vi=1,2,...,n, then 3 | f(si)—f(ti) | Aai<e

3. If fER(a) and the above holds, then Y | f(si)Aai—/fda | <e

e. If f is continuous on [a,b], then fER(a) on [a,b]

f. If f is monotonic on [a,b] and a is continuous, then f&R(a)

Lecture 26 (Continued Chapter 6 Rudin)

More on Integrations:

a.If fis discontinuous only at finitely many points, and o is continuous where f is discontinuous, then
feER(a)
b. Let f:[a,b]—[m,M] and ¢:[m,M]—R is continuous. If fis integrable with respect to a,
then h=¢°f is integrable with respect to a

1. If f1,f2€R(a) and c ER, then f1+£2,cf1 ER(0),and
[f1+f2da=[f1da+]f2da, Jcflda=c/f1da.

2. If f,g ER(a) and f(x)<g(x), VxE[a,b], then [fdo<]gda

3.If fER(a) on [a,c], then fER(a) on [a,b] and on [b,c] if a<c<b,
and Jacfda=|abfdo+/befda

4. If fER(a) on [a,b], and |f(x)|<M on [a,b], then
| Jabfdo | <M(a(b)—a(a))a

S.IffER(al) and fER(02) and let ¢ be a positive constant, then
fER(al+02) and fER(cal) with [fd(al+a2)=/fdal+/fda2 and [fd(cal)=c[fdal
c.If f,g=R(0), then fg ER(a).If fER(a), then |f| ER(0) and |Jabfda|<[ab|f|da.
d. Unit Step function: The unit step function I is defined by I(x)=0 if x<0 and I(x)=1 if
x>0.
e. If f:[a,b]—>Rf[a,b]—R and is continuous at s E[a,b] and a(x)=I(x—s), then [fda=f(s)



e f.Suppose cn>0, for n=1,2,3,...> cn<oo, {sn} is a sequence of distinct points in (a,b), and
o a(x)=Ycnl(x—sn). Let f be continuous on [a,b], then[fdo=Y cnf(sn)



