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1 Introduction

The Set of Natural Numbers, N: The set of all positive integers (excluding
0). e.g. {1, 2, 3, ...}

The Set of Integers, Z: The set of all integers e.g. {...,−2,−1, 0, 1, 2, ...}

The Set of Rational Numbers, Q: The set of all rational numbers i.e.
the set of all p/q where p, q ∈ Z and q 6= 0

The Set of Real Numbers, R: The set of all rational and irrational real
(not imaginary) numbers.

Note:

• N ⊂ Z ⊂ Q ⊂ R

• ∅ denotes the empty set

• Rational Zeros Theorem: Let c0 + c1x + ... + cnx
n = 0 be a polynomial

equation with n ≥ 0 and c0 6= 0, cn 6= 0. Then the only rational candidates
for solutions of this equation have the form a/b where a divides c0 and b
divides cn.

• Triangle Inequality: |a+ b| ≤ |a|+ |b|

Upper Bound: Let ∅ 6= S ⊂ R. We say α is a upper bound of S if α ≥ β for
all β ∈ S.

Lower Bound: Let ∅ 6= S ⊂ R. We say α is a lower bound of S if α ≤ β
for all β ∈ S.

Note:

• Upper and lower bounds may not exist.

• The infinite union of countable sets is countable.
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• We define the supremum as the least upper bound of S where
sup(S) = min{α : α is an upper bound of S}

• We define the infimum as the greatest lower bound of S where
inf(S) = max{α : α is a lower bound of S}

• ∅ is bounded above and below but sup(∅) = DNE and inf(∅) = DNE

The Completeness Axiom: Every set (excluding ∅) that is bounded above
has a supremum. An equivalent theorem for the infimum also exists.

The Archimedean Property: If a > 0 and b > 0, then there exists n ∈ N
such that na > b.

Density of Q: If a, b ∈ R and a < b, then there is a rational number r
such that a < r < b.

A Few Notable Examples from the Lectures, Homework, and Textbook:

1.
√

2 is not a rational number because, by the Rational Zeros Theorem, the
only possible solutions to x2− 2 = 0 are -2, -1, 1, and 2 and none of these
satisfy the equation.

2. E = (−2, 5] and F = (−2, 5) then sup(E) = sup(F ) = 5 and inf(E) =
inf(F ) = −2 but E 6= F .

3. E = {q : q ∈ Q and q ≤ π}
sup(E) = π /∈ Q
Thus the field Q is not complete and sets in Q don’t need to have a rational
number as an upper bound.

2 Sequences and Limits

A sequence is an ordered lists of real numbers an ∈ R that is defined for every
n ∈ N. A sequence is not a set.

We say a sequence (an) has a limit α ∈ R, if for all ε > 0, there existsN > 0 such
that for all n ∈ N with n > N , we have |an −α| < ε. We write limn→∞an = α.

Squeeze Theorem: Suppose (an) and (bn) are convergent sequences in R
such that an → s and bn → s. If cn ∈ R satisfies an ≤ cn ≤ bn for all n, then
cn → s.

Note:

• Sequences are useful for approximation.

• N is dependent on ε
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• Given sn and tn converge to s and t, respectively:

– For c ∈ R, limn→∞(csn) = cs

– limn→∞(sn + tn) = s+ t

– limn→∞(sntn) = st

– If tn 6= 0 for all n and t 6= 0, then limn→∞( sntn ) = s
t

A sequence (an) is increasing if an ≤ an+1. A sequence (bn) is decreasing if
bn ≥ bn+1.

Monotone Convergence Theorem: All bounded and monotone sequences
converge.

(sn) is a Cauchy sequence if for all ε > 0, there exists N > 0 such that
for all n,m > N , we have |an − am| > 0.

Note:

• If (sn) is a monotone sequence, then (sn) either converges or diverges to
∞ or−∞.

• Convergent sequences are Cauchy sequences and Cauchy sequences are
bounded

• A sequence (sn) converges if and only if limsup(sn) = liminf(sn)

Ross Theorem 11.3: If the sequence (sn) converges, then every subsequence
converges to the same limit.

Define: limsup(sn) = limN→∞sup{sn : n > N}
liminf(sn) = limN→∞inf{sn : n > N}

Note:

• Let (sn) be any sequence of nonzero real numbers:

– lim inf | sn+1

sn
| ≤ lim inf |sn|

1
n ≤ lim sup |sn|

1
n ≤ lim sup | sn+1

sn
|

– If lim | sn+1

sn
| exists, then lim | sn+1

sn
| = lim |sn|

1
n

A metric space (S,d) occurs when S is a set and d is a metric (function)
defined for all (x,y), x, y ∈ S, that satisfies:

1. d(x, x) = 0 and d(x, y) > 0

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) z ∈ S
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Bolzano-Weierstrass Theorem: Every bounded sequence in Rn has a con-
vergent subsequence.

A Few Notable Examples from the Lectures, Homework, and Textbook:

1. Prove lim 1
n2 = 0

Let ε > 0 and let N > 1√
ε
. Then n > N implies n > 1√

ε
and hence ε > 1

n2 .

Thus n > N implies | 1n2 − 0| < ε

2. Let (sn) be a bounded sequence, show that
lim sup sn = inf{supn≥N (sn) : N ∈ N}.
Let AN = sup{sn : n ≥ N} and u = inf{AN : N ∈ N}. Then AN ≥ u for
all N. And for any ε > 0, there exists N of {An} such that u+ ε > AN .By
monotonicity, An > N , we have u+ε > AN ≥ An ≥ u implies |An−u| < ε.

3. Let (sn) be a sequence such that |sn+1 + sn| < 2−n for all n ∈ N. Prove
that (sn) is Cauchy.
|sn − sn+k| ≤ |sn − sn−1|+ |sn−1 − sn−2|+ ...+ |sn−k−1 − sn−k|
≤ 2−n + 2−n−1 + ...+ 2−n−k+11 = 2−n(1 + 1

2 + ...+ 2−k+1 ≤ 2−n × 2
Thus (sn) is Cauchy.

3 Topology

A set E contained in a metric space S is open if and only if for all x ∈ E, there
exists a δ > 0 such that Bδ(x) ⊂ E.

The arbitrary union of open sets is open and the intersection of finitely many
open sets is open.

A set E contained in a metric space S is closed if every limit point of E is
a point of E. A point p is a limit point if every neighborhood of p contains a
point q 6= p such that q ∈ E.

The arbitrary intersection of closed sets is closed and the union of finitely many
closed sets is open.

A set K ⊂ S is compact if every open cover of K contains a finite subcover.

Heine-Borel Theorem: K ⊂ Rn is compact if and only if K is closed and
bounded.

A set K in a metric space S is sequentially compact if every sequence in
K has a convergent subsequence that converges to a limit that is also in K.

A set E in a metric space X is connected if E is not a union of two nonempty
separated sets.
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Note:

• E ⊂ S is closed if and only if Ec is open.

• ∅ and R are both closed and open.

• ”open” and ”closed” are relative terms (remember to say open in space
X)

• Heine-Borel Theorem only applies to sets in Rn

• Separated sets are disjoint but disjoint sets are not necessarily separated.
e.g [0,1] and (1,2]

A Few Notable Examples from the Lectures, Homework, and Textbook:

1. Show that K = {1, 12 , ...} ∪ {0} ⊂ R is compact.
Let {Gα} be an open cover of K. Then there exists Gα0 with 0 ∈ Gα0 .
There exists δ > 0 such that Bδ(0) ⊂ Gα0 . Thus 1

n ∈ Gα0 for all 1
n < δ.

So there are only finitely many points in K that are not covered by Gα0 .
Say 1

N < δ, then for all n ≤ N , we let Gαn
cover the point 1

n , then
{Gα1

, Gα2
, ..., GαN

, Gα0
} is a finite subcover of K.

2. Find a subset K ⊂ Q such that K is closed and bounded in Q but not
compact.
K = [0, 1] ∩Q

3. Is Q connected?
Let (−∞,

√
2) ∩ Q = A and (

√
2,∞) ∩ Q = B so A ∪ B = Q. Then

(−∞,
√

2] = Ā and [
√

2,∞) = B̄ so Ā∩B = ∅ and A∩ B̄ = ∅. Therefore,
Q is not connected.

4 Series

Consider the sequences (sn)∞n=m of partial sums:
sn = am + am+1 + ... + an =

∑n
k=m ak. Then

∑∞
n=m an = S if and only if the

sequence (sn) of partial sums converges to S.

Cauchy Criterion: A series
∑
n an satisfies the Cauchy criterion if its se-

quence (sn) of partial sums is Cauchy: for each ε > 0, there exists a number N
such that n,m > N implies |sn − sm| < ε.

Comparison Test: Let
∑
an be a series where an ≥ 0 for all n:

1. If
∑
an converges and |bn| ≤ an for all n, then

∑
bn converges.

2. If
∑
an =∞ and bn ≥ an for all n, then

∑
bn =∞.
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Ratio Test: A series
∑
an of nonzero terms:

1. converges absolutely if lim sup |an+1

an
| < 1

2. diverges if lim inf |an+1

an
| > 1.

3. Otherwise lim inf |an+1

an
| ≤ 1 ≤ lim sup |an+1

an
| and the test gives no infor-

mation.

Root Test: Let
∑
an be a series and let α = lim sup |an|1/n. The series

∑
an:

1. converges absolutely if α < 1

2. diverges if α > 1.

3. Otherwise α = 1 and the test gives no information.

Alternating Series Test: If a≥a2 ≥ ... ≥ an ≥ ... ≥ 0 and lim an = 0,
then the alternating series

∑
(−1)n+1an converges. Moreover, the partial sums

sn =
∑n
k=1(−1)k+1ak satisfy |s− sn| ≤ an for all n.

Integral Test:
∑∞
n=1

1
np <∞ if p > 1.

Note:

• If
∑
an converges, then lim an = 0.

A Few Notable Examples from the Lectures, Homework, and Textbook:

1. Show
∑∞
n=0 ar

n = a
1−r when |r| < 1.

sn = a(1 + r + ... + rn) = a 1−rn+1

1−r . Since |r| < 1, lim rn+1 = 0 so
lim sn = a

1−r .

2. If an > 0 and
∑
an converges, show that

∑ √
an
n converges.

Let An =
∑n
j=1 aj and Bn =

∑n
j=1

√
aj
j be partial sums. Then

B2
n = (

∑n
j=1

√
aj
j )2 ≤ (

∑n
j=1 aj)(

∑n
j=1

1
j2 ). Since

∑
an and

∑
1
n2 con-

verge, say to limit S and T respectively, then for all n,
∑n
j=1 aj ≤ S and∑n

j=1
1
j2 ≤ T . Thus B2

n ≤ T ×S. Thus, since Bn is a monotone increasing
sequence and is bounded, Bn converges.

5 Continuity and Convergence

Let X and Y be metric spaces; suppose E ⊂ X, f maps E into Y, and p is a
limit point of E. We write f(x)→ q as x→ p, or limx→pf(x) = q if there is a
point q ∈ Y with the following property: For every ε > 0, there exists a δ > 0
such that dY (f(x), q) < ε for all points x ∈ E for which 0 < dX(x, p) < δ.

Definition One of Continuity: Suppose X and Y are metric spaces, E ⊂ X,
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p ∈ E, and f maps E into Y. Then f is said to be continuous at p if for every
ε > 0 there exists a δ > 0 such that dY (f(x), f(p)) < ε for all points x ∈ E for
which dX(x, p) < δ.

Definition Two of Continuity: If f : X → Y , then f is continuous if
and only if for any limit point p ∈ X, we have f(p) = limx→p f(x). i.e.
f(limx→p x) = limx→p f(x).

Definition Three of Continuity: A mapping f of a metric space X into
a metric space Y is continuous on X if and only if f−1(V ) is open in X for every
open set V in Y. There is an equivalent definition for closed sets.

Rudin Theorem 4.14 and 4.19: Suppose f is a continuous mapping of a
compact metric space X into a metric space Y. Then f(x) is compact and f is
uniformly continuous on X.

Let f be a mapping of a metric space X into a metric space Y. f is uni-
formly continuous on X if for every ε > 0 there exists δ > 0 such that
dY (f(p), f(q)) < ε for all p and q in X for which dX(p, q) < δ.

Rudin Theorem 4.22: If f is a continuous mapping of a metric space X into
a metric space Y, and if E is a connected subset of X, then f(E) is connected.

Intermediate Value Theorem: Let f be a continuous real function on the
interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b),
then there exists a point x ∈ (a, b) such that f(x) = c.

Let f be defined on (a, b) and f has a simple discontinuity at x then either:

1. f(x+) 6= f(x−)

2. f(x+) = f(x−) 6= f(x)

Suppose {fn} is a sequence of functions on a set E, and suppose that the se-
quence of numbers {fn(x)} converges pointwise for every x ∈ E. We can
then define a function f by f(x) = limn→∞ fn(x).

We say that a sequence of functions {fn} converges uniformly on E to a
function f if for every ε > 0 there is an integer N such that n ≥ N implies
|fn(x)− f(x)| ≤ ε for all x ∈ E.

Cauchy Criterion for Uniform Convergence: The sequence of functions
{fn}, defined on E, converges uniformly on E if and only if for every ε > 0 there
exists an integer N such that m ≥ N , n ≥ N , x ∈ E implies |fn(x)−fm(x)| ≤ ε.

Weierstrass M-Test: Suppose {fn} is a sequence of functions defined on E,
and suppose |fn(x)| ≤Mn (x ∈ E,n = 1, 2, ...). Then

∑
fn converges uniformly
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on E if
∑
Mn converges.

Rudin Theorem 7.12: If {fn} is a sequence of continuous functions on E,
and if fn → f uniformly on E, then f is continuous on E.

Rudin Theorem 7.13: Suppose K is compact, and

1. {fn} is a sequence of continuous functions on K,

2. {fn} converges pointwise to a continuous function f on K,

3. fn(x) ≥ fn+1(x) for all x ∈ K, n= 1, 2,...

Then fn → f uniformly on K.

Note:

• Let f and g be continuous functions on X, then f+g,fg, and f/g are contin-
uous on X.

• The preimage of a compact set may not be compact.

• If
∑
fn(x) converges for every x ∈ e, and if we define f(x) =

∑infty
n=1 fn(x),

the function f is called the sum of the series.

• If pointwise convergence, N depends on ε and x. If uniform convergence,
N depends only on ε.

A Few Examples from the Lectures, Homework, and Textbook:

1. Is K = (0, 1] compact in X ⊂ R?
We know that K is bounded in X. Also, K is closed in X because (0, 1] =
X ∩ [0, 1] and [0, 1] is closed in R. But Heine-Borel Theorem does not
apply here because X 6= Rn. K cam be covered by {BX1

2n

1
n} for n ∈ N

but this does not have a finite subcover so K is not compact which verifies
that since K is not closed in R, K is not compact.

2. If K ⊂ Rn is compact and C ⊂ Rn is closed, prove that K+C is closed.
We only need to show that if pn ∈ K + C converges to p ∈ Rn, then
p ∈ K +C. Define each pn = xn + yn, xn ∈ K and yn ∈ F . Then we may
assume that xn → x ∈ K. Then yn = pn − xn with pn → p and xn → x.
So yn converges to p−x. Since C is closed, y ∈ C. Thus p = x+y ∈ K+C.

3. Prove that if f : X → R is Lipschitz continuous, then f is uniformly
continuous.
By Lipschitz continuity of f, we know that there exists a K > 0 such that
|f(x)− f(y)| ≤ K × d(x, y). Hence for all ε > 0, we may choose δ = ε

K so
that for any x, y ∈ X with |x− y| < δ, we have
|f(x)− f(y)| ≤ K × d(x, y) < Kδ = ε.
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4. Let fn, gn : X → R be sequences of continuous functions. Suppose fn → f
and gn → g uniformly. Is it true that fngn → fg uniformly?
No, we can write fn(x) = f(x) +αn(x), gn = g(x) + βn(x). Then αn → 0
and βn → 0 uniformly. Then fngn = (f(x) + αn(x))(g(x) + βn(x)) =
fg+fβn+αng+αnβn but fβn and gαn may not converge to 0 uniformly.
e.g. fn(x) = x, gn(x) = 1

n so f(x) = x and g(x) = 0. However fng = x
n

does not converge to fg = 0 uniformly.
Note that this statement is true if X is a compact set.

6 Differentiation

Let f be defined (and real-valued) on [a, b]. For any x ∈ [a, b], define

f ′(x) = limt→x
f(t)−f(x)

t−x (a < t < b, t 6= x).

Generalized Mean Value Theorem: Let f, g : [a, b] → R be continuous
on [a, b] and differentiable on (a, b) then there exists c ∈ (a, b) such that

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c). If g′(c) 6= 0, then f ′(c)
g′(c) = f(b)−f(a)

g(b)−g(a) .

Intermediate Value Theorem for f’(x): Suppose f is areal differentiable
function on [a, b] and suppose f ′(a) < λ < f ′(b). Then there is a point x ∈ (a, b)
such that f ′(x) = λ.

L’Hospital’s Rule: Suppose f and g are real and differentiable in (a, b), and

g′(x) 6= 0 for all x ∈ (a, b), where −∞ ≤ a < b ≤ ∞. Suppose f ′(x)
g′(x) → A

as x → a. If f(x) → ∞ and g(x) → 0 as x → a, or if g(x) → ∞ as x → a,
f(x)
g(x) → A as x→ a.

Taylor’s Theorem: Suppose f is a real function on [a, b], n is a positive
integer, f (n−1) is continuous on [a,b], f (n)(t) exists for every t ∈ (a, b). Let α, β

be distinct points of [a, b], and define P (t) =
∑n−1
k=0

f(k)(α)(t−α)k
k! . Then there

exists a point x between α and β such that f(β) = P (β) + f(n)(x)(β−α)n
n! .

Taylor Series of f at x0 as N → inf is Px0(x) =
∑∞
n=0

f(n)(x0)(x−x0)
n

n! .

A power series is a series of the form
∑∞
n=0 cn(x− x0)n with radius of con-

vergence R = sup{r ≥ 0 such that if |x− x0| ≤ r, the series converges}.

Note:

• Let f : [a, b]→ R, if f has a local max (or local min) at a point x ∈ (a, b)
and if f ′(x) exists, then f ′(x) = 0.

• If [a, b] ∈ R is compact, f([a, b]) is compact.

9



• If f is differentiable on [a, b], then f’ cannot have any simple discontinuities
on [a, b].

• Taylor’s Theorem with n=1 gives the Mean Value Theorem.

• To estimate the error of the constant approximation,
f(x)− Pα,0(x) = (x− α)× f ′(c) for c between x and a.

• To estimate the error of the linear approximation,

f(x)− Pα,1(x) = (x− α)2 × f ′′(c)
2 for c between x and a.

• A smooth function f means f (n)(x) exists for all x ∈ R and n ∈ N.

• The Taylor Series may not converge for x ∈ R and even if the series
converges for x ∈ R, it may not equal to f(x).

• If f ′(a) = f ′(b) = 0, it is not possible to have a c ∈ (a, b) such that
f ′(c) = 0.

Rudin Theorem 7.17: Suppose {fn} is a sequence of functions, differentiable
on [a, b] and such that {fn(x0)} converges for some point x0 on [a, b]. If {f ′n}
converges uniformly on [a, b], then {fn} converges uniformly on [a, b], to a func-
tion f, and f ′(x) = limn→∞ f ′n(x) (a ≤ x ≤ b).

Note:

• There exists a real continuous function on the real line which is nowhere
differentiable.

A Few Notable Examples from the Lectures, Homework, and Textbook:

1. Let f : [a, b] → R be differentiable. Prove that f ′(x) cannot have any
simple discontinuities.
Proof by contradiction. Suppose there is a simple discontinuity at
x0 ∈ (a, b), then f ′(x0) is not equal to either the left or right limit of f ′(x)
at x = x0. Without loss of generality, suppose f ′(x0) 6= limx→x+

0
f ′(x0).

Let a = f ′(x0), b = limx→x+
0
f ′(x), and let ε = |a−b|

2 . By the definition of

a limit, there exists δ > 0, such that if x ∈ (x0, x0+δ), then |f ′(x)−b| < ε.
However, this contradicts the Intermediate Value Theorem for derivatives
when applied to the interval [x0, x0+ δ

2 ]. Since f ′(x0) = a, |f ′(x0+ δ
2 )−a| ≥

|a − b| − |f ′(x0 + δ
2 ) − b| ≥ |a−b|

2 . Hence for µ = 2a
3 + b

3 between a

and b, there exists f ′(γ) = µ with γ ∈ (x0, x0 + δ
2 ). This means that

|f ′(γ)− b| = |µ− b| = 2
3 |a− b| >

|a−b|
2 = ε. This is a contradiction.

2. If a sequence of differentiable functions converges uniformly, does it mean
that f(x) is differentiable.
No. Consider f(x) = max{0, x}, x ∈ R and fn(x) = 1

n log(1 + enx). Then
each fn(x) is smooth and fn(x) converges uniformly to f.
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3. If f : R→ R is a continuous function such that f ′(x) exists for all x 6= 0.
If we also know that limx→0 f

′(x) = 5. Show that f ′(0) = 5.

We need to show that limh→0
f(h)−f(0)

h = 5.
Apply the Mean Value Theorem to the interval [0, h]. Assume that h > 0
(the h < 0 case is similar), then there exists γ ∈ (0, h) such that
f(h)−f(0)

h = f ′γ. Since limx→0 f
′(x) = 5, hence for all ε > 0, there exists

δ > 0 such that if 0 < |x| < δ, then |f ′(x) − 5| < ε. Thus, if 0 < h < δ,

we have | f(h)−f(0)h − 5| = |f ′(γ) − 5| < ε. Hence limh→0+
f(h)−f(0)

h = 5.

Similarly (for h < 0), limh→0−
f(h)−f(0)

h = 5. Thus f ′(0) = 5.

7 Integrability

Let [a, b] be a given interval. By a partition P of [a,b] we mean a finite set
of points x0, x1, ..., xn, where a = x0 ≤ x1 ≤ ... ≤ xn = b. Now suppose f is
a bounded real function defined on [a, b]. Corresponding to each partition P
of [a, b] we put Mi = sup f(x) and mi = inf f(x) for (xi−1 ≤ x ≤ xi) and
U(P, f) =

∑n
i=1Mi(xi − xi−1), L(P, f) =

∑n
i=1mi(xi − xi−1).

If inf U(P, f) = supL(P, f), then f is Riemann-integrable on [a, b].

If U(P, α) = L(P, α), we say f is Riemann-Stieltjes integrable with respect

to α. We write this as f ∈ R(α) and
∫ b
a
f(x)dα(x).

Cauchy Condition: f ∈ R(α) on [a, b] if and only if for every ε > 0 there
exists a partition P such that U(P, f, α)− L(P, f, α) < ε.

Rudin Theorem 6.10: Suppose f is bounded on [a, b], f has only finitely
many points of discontinuity on [a, b], and α is continuous at every point at
which f is discontinuous. Then f ∈ R(α).

Change of Variable Theorem: Suppose φ is a strictly increasing continuous
function that maps an interval [A, B] onto [a,b]. Suppose α is monotonically
increasing on [a, b] and f ∈ R(α) on [a, b]. Define β and g on [A, B] by

β(y) = α(φ(y)), g(y) = f(φ(y)). Then g ∈ R(β) and
∫ b
a
gdβ =

∫ b
a
fdα.

The Fundamental Theorem of Calculus: If f ∈ R on [a, b] and if there is
a differentiable function F on [a, b] such that F ′ = f , then∫ b
a
f(x)dx = F (b)− F (a).

Integration by Parts: Suppose F and G are differentiable functions on
[a, b], F ′ = f ∈ R and G′ = g ∈ R. Then∫ b
a
F (x)g(x)dx = F (b)G(b)− F (a)G(a)−

∫ b
a
f(x)G(x)dx.

Rudin Theorem 7.16: Let α be monotonically increasing on [a, b]. Sup-
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pose fn ∈ R(α) on [a, b], for n = 1, 2, ..., and suppose fn → f uniformly on

[a, b]. Then f ∈ R(α) on [a, b], and
∫ b
a
fdα = limn→∞

∫ b
a
fndα.

Rudin Theorem 7.16 Corollary: If fn ∈ R(α) on [a, b] and if
f(x) =

∑∞
n=1 fn(x) (a ≤ x ≤ b), the series converging uniformly on [a, b], then∫ b

a
fdα =

∑∞
n=1

∫ b
a
fndα. i.e. The series may be integrated term by term.

Note:

• If f is uniformly continuous, then f ∈ R(α).

• If f is monotonic and α is continuous then f ∈ R(α).

• The integration operation
∫
fdα is linear in both f and α.

• The Riemann-Stieltjes integral assigns weight to an interval I = [c, d],

α(I) = α(d) − α(c). Integral
∫ b
a
fdα is approximated by a ”weighted”

sum,
∑
i f(Ii)α(Ii)

• It is possible to have a function F such that F ′(x) exists for all x ∈ [a, b]
and F ′ is bounded but F ′(x) is not integrable.

A Few Notable Examples from the Lectures, Homework, and Textbook:

1. Let f(x) be a function on [0, 1], with f(x) = { 0 x = 0
sin( 1

x ) x > 0
and let

α be given by α(x) = {
0 x = 0∑

1
n<x

2−n x > 0 .

Show that
∫ 1

0
f(x)dα(x) exists.

Since
∑∞
n=1 2−n <∞, hence as N →∞,

∑∞
n=N 2−n → 0. Thus, as x→ 0,

1
x → ∞ so α(x) =

∑
n> 1

x
2−n → 0. Thus α(x) is continuous at x = 0.

Since f(x) is a bounded real function with discontinuity only at x = 0 and
α is continuous at x = 0. Thus, by Rudin Theorem 6.10, f ∈ R(α).

2. Suppose f is a continuous non-negative function on [a, b]. Show that∫ b
a
f(x)dx = 0 implies f(x) = 0 for all x ∈ [a, b].

It suffices to show that there exists x0 ∈ [a, b], that f(x0) > 0. Let

ε = f(x0)
2 then there exists δ > 0 such that for all x ∈ [a, b], |x − x0| < δ

implies |f(x) − f(x0)| < ε. Thus f(x) > f(x0) − ε = f(x0)
2 , for all

x ∈ Bδ(x0)∩ [a, b]. Let [c, d] ⊂ Bδ(x0)∩ [a, b] for d > c. Then
∫ b
a
f(x)dx ≥∫ d

c
f(x)dx ≥

∫ d
c
εdx = ε(d− c) > 0. This contradicts with

∫ b
a
fdx = 0.

8 Questions

1. Why is N unbounded in R?
Answer: Assume N is bounded. Then α = sup(N) implies that n ≤ α for

12



all n ∈ (N). We know that n = 1 ∈ N which means n+1 ≤ α so n ≤ α−1
for all n. Thus α− 1 is a least upper bound of N which is a contradiction.

2. Prove that |a− b| ≥ ||a| − |b||.
Answer: |a| = |a−b+b| ≤ |a−b|+ |b| and |b| = |b−a+a| ≤ |b−a|+ |a| by
the Triangle Inequality. Then |a|−|b| ≤ |a−b| and |b|−|a| ≤ |b−a| = |a−b|
which implies that |a| − |b| ≥ −|a − b| so −|a − b| ≤ |a| + |b| ≤ |a − b|.
Thus |a− b| ≥ ||a| − |b||.

3. Does there exist a sequence that has an infinite number of x’s
with x ∈ R that converges to a limit other than x?

Answer: Let xn → L for L 6= x. Then let ε = |x−L|
2 > 0 so x is not

in the ε-neighborhood. However, this is a contradiction because the ε-
neighborhood contains all but finitely many values of (xn) but there are
infinitely many x’s.

4. Show that (−π2 ,
π
2 ) and R have the same cardinality.

Answer: Let f(x) = arctan(x), then f(0) = 0 and f(1) = π
4 . Then f(x)

is a continuous and strictly increasing function. Also f(x) is injective and
onto and maps (π2 ,

−π
2 ) to R.

5. If the sequence (sn) is bounded and the sequence (tn) converges
to t 6= 0, does limn→∞ necessarily exist?
Answer: No, let (sn) = (−1)n which is bounded by -1 and 1 and let
(tn) = 1

n + 7 which converges to 7 as n→∞. Then,

(sntn) = (−1)n
n + 7(−1)n. Thus (sntn) diverges.

6. Give an example of a set that has both a supremum and a max-
imum, a supremum and no maximum, and no supremum and a
maximum.
Answer: Both supremum and maximum exist: [0,1]. Only supremum
exists: [0,1]. Only maximum exists: such a set does not exist.

7. What is the difference between limsup and sup?
Answer: Supremum is the least upper bound of a set and denotes a value
while limsup is an operation that takes the limit of the ”tail” of a sequence.

8. Construct a sequence (sn) with lim sup sn = 1 and lim inf sn = −∞.

Answer: Let sn = { 1 + 1
n n is even

−n2 n is odd

9. Are Cauchy sequences necessarily monotone?

Answer: No, sn = (−1)n
n is not monotone but sn converges to 0 which

implies that (sn) is Cauchy.

10. If two sequences (sn) and (tn) are Cauchy and tn 6= 0 for all n. Is
sn
tn

Cauchy?
Answer: No. t > 0 but (tn) could converge to 0.
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e.g. Let tn = 1/n and sn = 1
n + 1 so sn → 1 as n→∞. Then sn

tn
= 1 + n

which diverges to ∞.

11. (From UC Berkeley Past Exam Archive from Math Department)
Show that Hn =

∑n
k=1

1
k is not Cauchy.

Answer: H2n =
∑2n
k=1

1
k . Then H2n − Hn =

∑2n
k=1

1
k −

∑n
k=1

1
k =∑2n

k=n+1
1
k = 1

n+1 + 1
n+2 + ... + 1

2n which has n terms. So 1
2n < 1

n+k for
k = 1, ..., n− 1 which implies that H2n −Hn >

n
2n = 1/2.

Thus for n,m > N , |Hn −Hm| < ε. When m = 2n, this inequality fails
for ε < 2, therefore Hn is not Cauchy.

12. What is a countable set?
Answer: A set E is countable if it has a finite number of elements or if
every element in E maps to a value in N.

13. Is Z countable?
Answer: Yes. Z = N ∪ −N ∪ {0}. We know that N is countable so −N
is countable and {0} is countable. Lastly, the union of countable sets is
countable. We could also create a one-to-one mapping between N and Z
with 1→ 0, 2→ 1, 3→ −1, 4→ 2, 5→ −2 and so on.

14. What is a field?
Answer: A system that has more than one element and satisfies the nine
associative, distributive, and commutative laws.

15. Does every unbounded sequence have a divergent subsequence?
Answer: Yes. If (|an|) is unbounded, then for every M ∈ R, we have
|an| > M . Let M = 1 and choose |an1

| > 1. Then let M = 2 and choose
|an2

> 2| and repeat this procedure to get |ank
| → ∞. Thus we have

found a subsequence of unbounded |an| that diverges to ∞.

16. If a set E is not open, does that imply that its complement is
not closed?
Answer: Yes because Ec closed would imply (Ec)c = E is open.

17. Are R and ∅ the only sets in R that are both open and closed?
Answer: Suppose E ⊂ R is both open and closed and E 6= R and E 6= ∅.
Then let x ∈ E and y /∈ E and without loss of generality, assume x < y.
Let F = [x, y], then E ∩ F is closed. Let z = supE ∩ F and z ∈ E ∩ F ,
also z < y. But since E is open, there exists ε > 0 such that Bε(z) is in
E. But then z < z + ε ∈ E which is a contradiction.

18. Show that the intersection of infinitely many open sets is not
open.
Answer: Let x ∈

⋂∞
n=1En and let En = (−1n ,

1
n ) for all n ∈ N . Let

ε > 0. Then find N ∈ N such that 1
N < ε. Then x ∈ (−1N , 1

N ) implies that
|x| < ε. Because ε is arbitrary, x = 0. Hence,

⋂∞
n=1 = {0} which is not

open.
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19. What is an open cover?
Answer: Let A be a nonempty subset of a metric space S. A sequence of
open sets (Gn) is an open covering of A if A ⊆

⋃
Gn.

20. What is a finite subcover?
Answer: Let (Gn) be an open cover of A. If (Gnk

) is a subset of (Gn)
and is also an open cover of A such that A ⊆

⋃
(Gnk

), then (Gnk
) is a

subcover of A. If (Gnk
) has finitely many terms, then it is a finite subcover

of A.

21. How are compactness and sequential compactness related?
Answer: They are equivalent! A subset of a metric space is compact if
and only if it is sequentially compact.

22. (From UC Berkeley Past Exam Archive from Math Department)
If A and B are connected in R and A∩B 6= ∅, prove that A∩B is
connected.
Answer: Assume that A ∪ B is not connected. Then there exist two
nonempty sets E,F ⊂ A ∪ B such that E ∩ F = ∅. So A ∪ B = E ∪ F .
Let x ∈ A∩B and without loss of generality, assume x ∈ A. F ⊂ A∪B is
nonempty so assume F∩A is nonempty. Define E′ = E∩A and F ′ = F∩A
which are nonempty. Then E′ ∩ F ′ = (E ∩A)∩ (F ∩A) = (E ∩ F )∩A =
∅ ∩ A = ∅ and E′ ∪ F ′ = (E ∩ A) ∪ (F ∩ A) = (E ∩ F ) ∪ A = ∅ ∪ A = A.
Thus E′ and F ′ separate A which is a contradiction.

23. What is Lipschitz continuity? How does it differ from pointwise
or uniform continuity?
Answer: A function f is Lipschitz continuous if and only if f : (a, b)→ R
is differentiable and its derivative f ′ : (a, b) → R is bounded. Thus,
Lipschitz continuity implies uniform and pointwise continuity.

24. Show that f(x) = x2 is uniform continuous on (0,1) but not on R.
Answer: Let ε > 0 and x, y ∈ (0, 1), then there exists δ > 0 such that
|x − y| < δ and we know that |x + y| ≤ |x| + |y| ≤ 2 by the Triangle
Inequality. Then |f(x) − f(y)| = |x2 − y2| = |x + y||x − y| < 2 × δFor
δ = ε

2 , |x2 − y2| < ε for all x, y.
Assume f is uniform continuous on R.Then by definition, for ε = 1, there
exists δ > 0 such that |x − y| < δ implies |x2 − y2| < ε = 1. Then let

x = n and y = n+ δ
2 so |n2 − (n2 + δn+ δ2

4 )| = | − δn− δ2

4 | = δn+ δ2

4 for

all n ∈ N. But δn+ δ2

4 � 1 for all n ∈ N so f is not uniform continuous on
R.

25. Let be A ⊂ R bounded and f : A → R be uniformly continuous.
Is f bounded on A?
Answer: Suppose that f is unbounded. For each n ∈ R, there exists
xn ∈ A where |f(xn)| > n. Now, |f(xn)| → ∞ but (xn) is bounded
and by Bolzano-Weierstrass Theorem, (xn) has a convergent subsequence
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(xnk
). (xnk

) Cauchy which implies that (f(xnk
)) is Cauchy and converges

and therefore bounded. So |f(xnk
)| ≤ M for all k. But if k > M , then

|fnk
| > nk ≥ k > M which is a contradiction.

26. What is a Riemann-Stieltjes integral?
Answer: A Riemann-Stieltjes integral is a generalization of a Riemann
integral where instead of integrating in terms of some variable x, we inte-
grate in terms of a function α.

27. What is a Lebesgue integral?
Answer: To find the area under a curve, a Riemann integral subdivides
the x-axis into vertical rectangles whereas a Lebesgue integral subdivides
the y-axis into horizontal rectangles.

28. Give an example which shows that pointwise convergence does
not preserve continuity in the limit.

Answer: Let fn(x) = {
1 x ≥ 1

n
nx x ∈ (0, 1

n )
0 x ≤ 0

so f(x) = { 1 x > 0
0 x ≤ 0

. Thus

limx→0(limn→∞ fn(x)) 6= f(0)

29. Give an example which shows that pointwise convergence does
not preserve differentiability in the limit.

Answer: Let fn : [−1, 1]→ R for fn(x) = x
2n

2n−1 . Note that

fn(x) = x × x
1

2n−1 and let gn(x) = x
1

2n−1 . Then gn → g where on [0, 1],

g(x) = { 0 x = 0
1 x ∈ (0, 1]

and on [−1, 0], g(x) = { 0 x = 0
−1 x ∈ [−1, 0)

.

Then fn → f where f(x) = { x x ≥ 0
−x x < 0

= |x| which is not differen-

tiable at x = 0.

30. Give an example which shows that pointwise convergence does
not preserve integrability in the limit.

Answer: Let fn(x) = { 0 x ∈ [q1, ..., qn]
1 else

where (qn) is a sequence of

rational numbers in [0, 1]. Then fn(x) → f(x) = { 0 x ∈ Q
1 x /∈ Q . Let P

be a partition of [0, 1] so that mi = 0 and Mi = 1 which implies that
U(P, f) = 1 and L(P, f) = 0 for any P. Thus f is not integrable because
1 = U(P, f)− L(P, f) < ε does not hold for ε < 1. But

f1(x) = { 0 x = q1
1 x 6= q1

is integrable with
∫ 1

0
f1(x)dx = 1. f2 is also inte-

grable with
∫ 1

0
f2(x)dx = 1. Thus limn→∞

∫ 1

0
fn(x)dx = 1 but

∫ 1

0
limn→∞ fn(x)dx

does not exist.

31. If fn is bounded for all n, is it true that limn→∞ fn(x) is bounded?
Answer: No. Take fn(x) = n

nx+1 which is bounded for all n. Then

limn→∞ fn(x) = 1
x which is unbounded at 0.
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32. If fn → f converges uniformly and f ′n exists, does f ′ exists?

Answer: No. Let fn(x) = sin(nx)√
n

then fn(x)→ 0 uniformly as

n → ∞. Then f ′(x) = 0 and f ′n(x) =
√
ncos(nx) and f ′n(0) =

√
n → ∞

as n → ∞. So uniform convergence does not preserve derivatives. i.e.

limn→∞(limh→0
fn(x+h)−fn(x)

h ) 6= limh→0(limn→∞
fn(x+h)−fn(x)

h ).

33. Explain the definition of the Riemann integral.
Answer: The definition states ”If inf U(P, f) = supL(P, f), then f is
Riemann-integrable on [a, b] where U(P, f) =

∑n
i=1Mi(xi − xi−1) and

L(P, f) =
∑n
i=1mi(xi−xi−1) where Mi = sup f(x) and mi = inf f(x) for

xi ≤ x ≤ xi.” So mi is the smallest value f takes on over the ith interval
while Mi is the largest value f takes on over the ith interval and (xi−xi−1)
is the length of the ith interval. So mi(xi − xi−1) and Mi(xi − xi−1) are
area approximations with mi(xi − xi−1) ≤ Mi(xi − xi−1). By summing
all of these area approximations, we get a upper and lower estimate for
the area under the curve. Thus when the least upper bound of the lower
estimate is equal to the greatest lower bound of the upper estimate, we
say that f is Riemann integrable.

34. Let f be continuous on [a, b]. Show that if
∫ c
a
f(x)dx = 0 for all

c ∈ [a, b], then f = 0 on [a, b].
Answer: Let x0 ∈ [a, b] and assume f(x0) 6= 0. Let δ > 0 then f 6= 0 in

Bδ(x0). Then
∫ x0+δ

a
f(x)dx = 0 and

∫ x0−δ
a

f(x)dx = 0 so∫ x0+δ

x0−δ f(x)dx =
∫ x0+δ

a
f(x)dx−

∫ x0−δ
a

f(x)dx = 0.

But
∫ x0+δ

x0−δ f(x)dx > |f(x0)|
2 × 2δ > 0 which is a contradiction so f is 0

everywhere.

35. If f : R→ R is continuous, then is f ∈ R(α)?
Answer: No, f must be continuous in some compact interval so that f is
then uniformly continuous, then this statement would be true.

36. We know that if f ∈ R(α) and g ∈ R(α) on [a, b], then fg ∈ R(α).

Does
∫ b
a
fgdα =

∫ b
a
fdα

∫ b
a
gdα?

Answer: No. Let f(x) = g(x) = x, then
∫ b
a
f(x)dx =

∫ b
a
g(x)dx = x2

2 |
b
a.

So
∫ b
a
f(x)dx

∫ b
a
g(x)dx = b2 − a2 but

∫ b
a
f(x)g(x)dx = x3

3 |
a
b = b3−a3

3 .

37. If fn → f pointwise on [a, b] and each fn is integrable, then is f

integrable such that limn→∞
∫ b
a
fn =

∫ b
a
f?

Answer: No, for example let fn : [0, 1]→ R such that
fn(x) = 2nx(1 − x2)n. For all x ∈ [0, 1], applying L’Hospital’s Rule, we

get limn→∞ fn(x) = 0 which implies that f(x) = 0 so
∫ 1

0
f = 0. Then

limn→∞
∫ 1

0
fn = limn→∞

∫ 1

0
2nx(1 − x2)ndx. Applying the Fundamental

Theorem of Calculus and using u-substitution with u = 1− x2 and
du = −2x, we get
limn→∞

∫
−nundu = limn→∞

−n
n+1 (1− x2)|10 = limn→∞

n
n+1 = 1.
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38. Prove that supL(P, f) ≤ inf U(P, f).
Answer: Let inf U(P, f) = U(f) and supL(P, f) = L(f). Suppose
U(f) < L(f). Then there exists a partition P1 of [a, b] such that
U(f) ≤ U(P1, f) ≤ L(f) and there exists a partition P2 of [a, b] such
that U(f) ≤ U(P1, f) < L(f, P2) ≤ L(f) by definition of U(f) and L(f).
But we know that L(P2, f) ≤ U(P1, f) which is a contradiction. Thus
supL(P, f) ≤ inf U(P, f).

39. From Midterm Two: Let f : Q → R be a continuous map. Is it
true that one can always find a continuous map g : R → R ex-
tending f, namely, g(x) = f(x) for any x ∈ Q?

Answer: No, this is is not true. Let f : Q→ R with f(x) = { −1 x <
√

2, x ∈ Q
1 x >

√
2, x ∈ Q .

By definition, Q and ∅ are open in Q and (−∞,
√

2)∩Q and (
√

2,∞)∩Q
are also open in Q and these are the only possible preimages f−1(E) for
E ⊂ R. Suppose there exists a continuous extension g to R, then the
left and right limit at

√
2 are g(

√
2+) = f(

√
2+) = 1 and g(

√
2−) =

f(
√

2−) = −1 which contradicts that g(
√

2−) = g(
√

2+) so there is no
continuous extension.

40. What is the difference between a topological space and a metric
space?
Answer: A metric space is a specific type of topological space where the
notion of distance is defined. A topological space has a topology which
”is a family of subsets that is closed under arbitrary unions and finite in-
tersections” (https://link.springer.com/content/pdf/bbm%3A978-1-4614-
1891-7%2F1.pdf).

41. Does compactness imply completeness of a metric space?
Answer: Let (X, d) be a metric space and let (xn) be a Cauchy sequence
in (X, d). Let xnk

be a subsequence that converges to x ∈ (X, d). Since
xnk
→ x then there exists N1 such that nk ≥ N1 implies |xnk

−x| < ε
2 . Let

N2 be such that n,m ≥ N2 implies |xn − xm| < ε
2 . Let n > N with N =

max{N1, N2}. Then |xn−x| = |xn−xN+xN−x| ≥ |xn−xN |+|xN−x| < ε.
So (X, d) is complete.

42. What does it mean for a set to be dense in a metric space?
Answer: A set S ⊂ X is dense in X if, for any ε > 0 and x ∈ X, there is
some |x− s| < ε. (https://brilliant.org/wiki/dense-set/)

43. (From UC Berkeley Past Exam Archive from Math Department)
Let g : [a, b]→ R be one-to-one and differentiable on the set (a, b).

Show
∫ b
a
g(x)dx+

∫ g(b)
g(a)

g−1(u)du = bg(b)− ag(a).

Answer: So g([a, b]) is an interval and g−1 is differentiable.
∫ b
a

(g−1 ◦
g(x))g′(x)dx =

∫ g(b)
g(a)

g−1(u)du with f = g−1 and u = g(x). But (g−1 ◦

g)(x) = x for all x ∈ [a, b]. So
∫ g(b)
g(a)

g−1(u)du =
∫ b
a
xg′(x)dx. Then
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by integration by parts,
∫ g(b)
g(a)

g−1(u)du = xg(x)|bx=a −
∫ b
a
g(x)dx. Thus∫ b

a
g(x)dx+

∫ g(b)
g(a)

g−1(u)du = bg(b)− ag(a).

44. (From Professor Hass’s Practice Exam) Let f be integrable on
[0, 1] and (xn) be the sequence xn = 1 − 1

n2 for all n ∈ N. Show∫ 1

0
f(x)dx = limn→∞

∑n
k=1

∫ xk+1

xk
f(t)dt.

Answer:
∑n
k=1

∫ xk

xk−1 f(x)dx =
∫ xn

x0
f(x)dx = F (xn) which is a constant

(because xn is increasing to 1).

Thus limxn→1

∫ xn

x0
f(x)dx = F (1) =

∫ 1

x0
f(x)dx

45. Prove that if (an) is a sequence in R, then

lim supn→∞(n|an|)
1
n = lim supn→∞ |an|

1
n .

Answer: Let ε > 0. We know that n
1
n → 1 as n→∞. Then there exists

N ∈ N such that n > N implies 1− ε < n
1
n < 1 + ε, then

(1− ε)|an|
1
n < n|an|

1
n < (1 + ε)|an|

1
n for n-large. Then

lim sup(1− ε)|an|
1
n ≤ lim supn

1
n |an|

1
n ≤ lim sup(1 + ε)|an|

1
n . So

(1−ε) lim sup |an|
1
n ≤ lim supn

1
n |an|

1
n ≤ (1+ε) lim sup |an|

1
n . Since ε > 0,

lim sup |an|
1
n = lim sup(n|an|)

1
n .

46. What is radius of convergence?
Answer: The radius of convergence is the radius of the largest disk cen-
tered at some point such that the series converges for all values inside the
disk.

47. (From UC Berkeley Past Exam Archive from Math Department)

Find the radius of convergence of S(x) =
∑∞
n=1

(x+4)n

n for x0 = −2.

Answer: limn→∞
|x+4|
n

1
n

= |x + 4| limn→∞
1

n
1
n

. If |x + 4| < 1, S exists, if

|x+ 4| > 1, S does not exist. |x+ 4| < 1 holds if and only if x ∈ B1(−4)
so R=1.

48. Find the radius of convergence of S(x) =
∑∞
n=0 n!xn.

Answer: limn→∞
|an+1x

n+1|
|anxx| = |x| limn→∞

(n+1)!
n! = |x| limn→∞(n + 1) =

{ ∞ x 6= 0
0 x = 0

. Thus R = 0.

49. When is Heine-Borel Theorem true?
Answer: Heine-Borel Theorem only holds in Rn. (e.g. As we saw previ-
ously, this is not necessarily true in Q).

50. Prove that limn→∞ n
1
n = 1.

Answer: Because lnx is continuous, ln(limn→∞ n
1
n ) = limn→∞

lnn
n = 0.

Then limn→∞ n
1
n = e0 = 1.
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