Math 104 Final Review:

Midterm 1

1. Completeness axiom of real numbers and limit of sequence of real numbers: (Ross 1.1, 1.2, 1.3, 1.4)

Lecture 1:

- **Natural Numbers** N = {1, 2, 3, ... }
- Integers $Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- **Rational Numbers (ratios of integers)** $Q = \{p/q : p, q \in Z \text{ and } q \neq 0\}$
- Complex Numbers $C = \{x + iy : x, y \in R\}$
- **Propositions**: if r is a rational number, (r=c/d, gcd(c,d)=1) and it's a root of the following integer coefficients polynomial: $Cnx^n+Cn-1x^n-1+\ldots+C0=0$, then d divides Cn, c divides C0
- <u>Corollary:</u> if r =c/d ≠0 is a root of a "monic polynomial", its lead term has coefficient is 1: xⁿ+Cn-1xⁿ-1+...+C0=0 (we can apply this to prove that the roots of x²-2=0 are not rational numbers)

Lecture 2:

• <u>Supremum and Infimum</u>: Let S be a non-empty subset of R. If S is bounded above (i.e exists an upper bound for S), and S has a least upper bound, then we call it the supremum of S denoted as sup(S). If S is bounded below and S has a greatest lower bound, then we call it the infimum of S, denoted as inf (S).

NOTE: the difference between sup, inf and max, min, for example, S=(0,1), max(S) doesn't exist, least upper bound(S)=1, greatest lower bound(S)=0

- <u>Completeness Axiom</u>: Every non-empty subset $S \subseteq R$ that is bounded above has a least upper bound, and if S is bounded from below, then inf S exists.
- <u>Archimedean Property</u>: If a>0, b>0 are real numbers, then for $n \in N$, we have an>b
- Sequence: a1,a2,a3,...,an,∈R, could be denoted as (an)n∈N
 NOTE: sequence is not a set. Sequence has its element come in order (first, second...). Set is just information about "who is in the set".
- Some important propositions about inf and sup:
 - 1. Suppose that A, B are nonempty sets of real numbers such that $x \le y$ for all $x \in A$ and $y \in B$. Then sup $A \le \inf B$
 - 2. Suppose that A, B are subsets of R such that $A \subseteq B$. Then sup $A \leq$ sup B, and inf $A \geq$ inf B.
 - If A ⊂ R, then M = sup A if and only if: (a) M is an upper bound of A; (b) for every M0 < M there exists x ∈ A such that x > M0. Similarly, m = inf A if and only if: (a) m is a lower bound of A; (b) for every m0 > m there exists x ∈ A such that x < m0.

Homework 1:

下午1:16 4月28日周三	5 T 🌶 🖉 ବ ଓ 🔒	≈ © 63% ■ + : □
	4.15 (of a, b = (p. show if a = b + to rai)	
	$n \in (N, then n \in b.$	
	Proof by contradiction	
	Assume that it as by the for all	
	NEIN, flen a>b	
	Note that a > b impores that a-b > o	
	By archimedean property. Here exists a	
	NOE(N Sum that	
	(a-b)no >)	
	thy a-b> 1	
	$A > b + \frac{1}{40}$	<u>~</u>
	which contradicts a >b+ n + v all AGIN	11 /
	Therefore, we not have all. Q	13
~		
M		Œ

2. Limit of bounded monotonic sequence, limit theorem, liminf, limsup (Ross 2.7,2.9,2.10)

Lecture 3:

- <u>Limit of Sequence</u>: We say a sequence (an)n has limit $\alpha \in \mathbb{R}$, if $\forall \epsilon > 0$, there exists a real number N>0, such that n>N, we have $|a_n \alpha| < \epsilon$, denoted by $\lim_{n \to \infty} a_n = \alpha$
- **<u>Property and tools to find limit</u>**:

- 1. All convergent sequences are bounded
- 2. If liman= α , and if k \in R, then lim(k.an)=k. α
- 3. Let an, bn be convergent sequences, $\lim_{\alpha \to \alpha} a, \lim_{\alpha \to \alpha} b, hen$
 - a. $\lim(an+bn)=\lim(an)+\lim(bn)=\alpha+\beta$
 - b. $\lim(an.bn)=(\lim an).(\lim bn)=\alpha\beta$
 - c. If an $\neq 0$, \forall n and if $\alpha \neq 0$, then, $\lim(1/an) = 1/\alpha$

Lecture 4:

• <u>Continued important theorems:</u>

- 1. $\lim_{n\to\infty} \frac{1}{n^p=0} \quad \forall p>0$
- 2. lima^n=0, if |a| < 1
- 3. $\lim n \to \infty n^{(1/n)=1}$
- 4. $\lim n \to \infty a^{1/n} = 1$ for a > 0
- <u>Cauchy Sequence</u>: if $\forall \epsilon > 0$, there exists N>0, s.t $\forall n1, n2 > N$, we have $|a_{n1}-a_{n2}| < \epsilon$, (using graph--oscillation amplitude gets smaller and smaller)
- <u>Monotone Sequence</u>: an increasing sequence is such that an+1≥an, a decreasing sequence is such that an+1≤an, they are both called monotone sequences.

• <u>Theorems</u>:

- 1. All bounded sequences are convergent
- 2. Let (an) be a sequence, (an) is cauchy $\Leftrightarrow a_n$ converges

Homework 2

3. Subsequences and Cauchy Sequences: (Ross 2.10, 2.11) Lecture 5

• Monotone Sequence and Cauchy:

- 1. limsup: Let (<u>an</u>) be a sequence in R, limsupan=lim $N \rightarrow \infty$ (sup n > N an)
- 2. limit :Let (<u>an</u>) be a sequence in R, limit $an = \lim N \rightarrow \infty (\inf n > N an)$

Remark: if we allow the notion of $\lim_{m\to\infty} \infty$ or $\lim_{m\to\infty} \infty$, then $\lim_{m\to\infty} \infty$ are $n = -\infty$, $\lim_{m\to\infty} n = -\infty$.

- 3. A monotone increasing sequence has several properties;
 - a. If it's bounded, then its limit exists
 - b. If it's unbounded (without upper/lower bounds), then $\lim an = +\infty$
 - c. Strategy: if we want to prove a=b, one way to prove it is $|b-a| < \epsilon$, for any $\epsilon > 0$

• <u>Lemma:</u>

a. if (an) is bounded sequence, then its limsup, liminf exists

b. If (an) is bounded sequence, and α +=limsupan, then for any $\epsilon > 0$, $\exists N$ such that $\forall n > N$, we have an $< \alpha + +\epsilon$

• <u>Theorem:</u> let (an) be a bounded sequence. Then lim an exists⇔limsup(an)=liminf(an)

Lecture 6

- <u>Subsequence</u>: let (Sn) be a sequence of real numbers. Given a strictly increasing sequence of indices n1 < n2 < n3 < ... nm < ... we define the corresponding subsequence as*tm*;=Snm, (*tm*) is called a subsequence of (sn).Sometimes, we write (Snk)k for the subsequence.
- <u>Lemma:</u>
- a. if (Sn) is convergent, then any subsequence converges to the same point
- b. If α =limSn exists in R, then there exists a subsequence that is also monotone.
- c. let (Sn) be any sequence. Then for any t∈ R, (Sn) has a subsequence converges to t ⇔
 ∀ ε>0, the set {n∈N : |Sn-t| <ε} is infinite.

Lecture 7

- **<u>Theorem</u>**: (Bolzano-Weierstrass Theorem)
 - a. Every bounded sequence has a convergence subsequence.
 - b. Let (Sn) be a sequence, S be the set of subsequential limits of (Sn), then
 - 1. S in nonempty
 - 2. supS=limsup(Sn), infS=liminf(Sn)
 - 3. $S=\{\alpha\} \Leftrightarrow \lim Sn \text{ exists and equals to } \alpha$

c. Let S be the set of subsequential limits of (sn). Suppose (tn) is a sequence in S $\cap R$ and t=lim(tn). Then t \in S

- <u>Subsequential limit:</u> let (Sn) be a sequence in R. A subsequential limit is any real number or the +∞,-∞, that is the limit of a subsequence
- <u>Lemma:</u> let (Sn) be any sequence. Then there exists a monotone sequence whose limit is limsup(Sn). Similarly, there exists a monotone sequence whose limit is liminf(Sn)

Lecture 8

• <u>Themorem:</u>

- a. let sn be a sequence with limit S>0, let tn be any sequence. Then limsup (sn.tn)=S. limsup(tn)
- b. Let (Sn) be a sequence of positive numbers, then we have liminf (Sn+1/Sn)≤liminf(Sn)^(1/n)≤limsup(Sn)^(1/n))≤limsup(Sn+1/Sn)

Homework 3

下午6:53 5月6日周四				🗢 93% 🔳
< 🗅	5	T 🥒 🖉 🛇 🥱 🕲	Q	+ : 🔾
	1. () Une define () Ensur than the cace in 6/10 Menotime cannot and cup (cm, c) son flow cm (b) Sime Ang hence flim the can al Ten Angel U+557AM.	[More up (in con. 1) = [min of so I'm of is, son 1 = [min of so t m[is, son 1 + [min of so t m[is, son 1 + [son for one] - 1/4] (if Awe again a converge cons tug an bounded. The Ave son - + - mit (is, son - 1 > 0 to ave son - + - mit (is, son - 1 > 0 to ave = 1 min sop so Awe (in and Aw is a bounded seq i Awe (in the direction with a for the ave of the ave of a converge of the son Awe (in the direction with a son A two Ar for any (is a for a taway of the and the arm of the son A two Ar for any (is a for a two of the arm of the arm of a two of the arm of the arm of the son A two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of a two of the arm of the arm of the arm of the arm of a two of the arm of the arm of the arm of the arm of a two of the arm of the arm of the arm of the arm of a two of the arm of the	Super I HEND M-Esu I HEND HAN - bounded AN and the Hen co Ion DA supp su & low M fey mence - SNI NEN S - - 39 er	ΥΥΥ ×
	lover 60m	J. of (ANY. contrading the def	of ML	
	-> Hth 7	V, we have	9	1
	[A+ 6 7	ZANZAHZI = A		7
	1100.10	(A) = (A) = (A + A) = (A		\sim
	partie, p	W. Contrar [13] (1 th		Œ
				4
下午6:57 5月6日周四	Ś	T 🖋 & ◇ ໑ ଓ	Q	≈ 93% ■ + : □
	2: Define by de for DK We co than fo an by for the The har The har that the that that the that that the that the that the the the the the the the th	At = Sup San: 43× 1: bk = sup Son: n3×1; tim tim Sup an= lim k-safte and si tim tim Sup as the safte safte safte the supremum of all terms of can the s the supremum of all terms of can usin up the supremum of all terms of can usin the supremum of all terms of the sup the supremum of all terms of the supremum of the sup terms the supremum of all terms of the supremum of the s	b) initarity initar	

Homework 4

下午9:19 5月6日周四				🗢 47% 🔳
< 凸	5	T 🖋 & ◇ 今 🥴	Q	+ : 🗅
		Note that IF Ship S IS IO.S. Han TR'S oblater bo define Sn=Supp. for all in: @Tu car that Supp S IS, Not M S. Shin S IS Journalad. Ship (che Lar Supp.S S. va barru Har He manuber		
		of rationals in the interval (2,-6,5). is infinite-tor all		
		to and that none of them to upper bound of S. they are compared in S. by the non-top $O(p)(0, S, n) = -\frac{1}{2}$ by the non-top $O(p)(0, S, n) = -\frac{1}{2}$ by the second of the second of the second (S-65). number contragrand to S. We think these covery. Sequence.		
		has a manotonic subsequence and the tact that it a		
		Sequence converges to a limit. Han every subsequences		
		converge to some limit. This, is have a Unonstaniv		
		Sinc & is bounded, hence d= sup s.		
		exists M.R. 27065. Hen we may		
		take the constant sequence (Sn).		
		with shed. the N. 24 of S.		
		tien by unimality) of a among upper		
		bounds of S. for any 220,		
		there expos X6-5. Sum that		
		J=x>J-5. Hence the Cer Az=		<u>^</u>
		{x6s} d>x2d-Gh is non-emptry,		4
		Hence to each at Nive way les Su		12
		be a very element in A 1/n. This sequence (Sn)		~
		converges to a. We may then take a monotore		
		subleg of (sn). to achaeve decives beginirense		Ð

4. Metric Space and Topology (Ross 2.13)

Lecture 9

- <u>Metric Space</u>: A metric space is a set S, together with a distance function d:S×S→R, such that 1. d(x,y)≥0, and d(x,y)=0⇔x=y
 - 2. d(x,y)=d(y,x)
 - 3. $d(x,y)+d(y,z)\geq d(x,z)$
- <u>Cauchy Sequence in a metric space (S.d)</u>: A sequence (Sn) in S is cauchy if $\forall \epsilon > 0$, there exists a N>0, such that $\forall n,m>N$, d(Sn,Sm)< ϵ
- <u>Convergence in a metric space (S,d)</u>: A metric space (S,d) is complete, if every Cauchy sequence is convergent
- <u>Induced distance function</u>: if (S,d) is a metric space, and A⊂S is any subset, then (A,d | A×A)is a metric space
- <u>Completeness:</u> A metric space (S,d) is complete if every Cauchy sequence is convergent.
- <u>Bolzano-Weierstrass Theorem for R^n:</u> Every bounded sequence (sm)m∈Rⁿ has a convergent subsequence.
- <u>Topology:</u> let S be a Set. A topological structure on S is the data of a collection i of subset S, if U⊂S, and U∈I

Homework 5

• Prove well-defined first

< 凸	5 Math 104 2021年2月	T 🖋 🖉 🛇 🥱 🥴	.0.	1	12 13	
	Math 104 2021年2月		Ŷ	Τ	-	0
	Ex 1 12 y 1 2014 (2) (i) (i) J= (ni) 7.5 (0). (i)	Since from an legan bound of the from an legan bound of the from the provided of the from th	rs rr """ """ "" "" "" "" "" ""			1/10 >
		$a^* (x_y) = \sum_{j=1}^{\infty} (x_j - y_j) = (x_1 - y_1) + (x_2 - y_3) + \cdots + x_j$	-yi > ,			Ð
下午10:00 5月6日周四		-			२ 419	% 🔳
< 凸	5	T & & ◇ ♀ ଓ	Q	+	÷	D
	(j. 	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	9 2172 2066 //+			

Lecture 10 Midterm 1