· Natural number.

(,)

$$N = \{0, 1, 2, 3, \dots, \}$$

• successor construction: 2 is the successor of 1.
3 - --- of 2.
so, starting from 0, one can reach all the natural numbers.
• Peano Anxioms for notural number (Tao.I)
• mathematical induction property (Axiom s):
Let n be a natural number, P(n) be a statement
depending on n, if the following 2 conditions holds.
(a) P(o) is true
(b). If P(k) is true, then P(km) it true.
(i.e. P(k) \Rightarrow P(km)),
then, P(n) is true for all n EIN.
Rak:
"operations allowed for N": +, X
• if n, m EIN, then n+m EIN, n×m EN
· -, (are not always defined.
(c) Integers: Z. = $\{1, \dots, 2, \dots, 3\}$.
(down operation: +, -, • (no division here).
(formely, Zi is a "ring") (you can read about ring in.
Harrison chevis note).

(3). Rational numbers: $Q = \frac{2}{n} | m, n \in \mathbb{Z}, n \neq 0^2$. we have all 4 operations t, -... /.Q is now a "field".

Q is an ordered field, there is a "relation"
$$\leq .$$

A relation S is a subset of Q x Q, if
(a,b) $\in S$, we say "a and b has relation S", or "a S b"

The "
$$\leq$$
" relation has $\frac{3}{56}$ properties:
(1) $a \leq b$ and $b \leq a$, then $a = b$
(2). if $a \leq b$ and $b \leq c$, then $a \leq c$ (transitivity).
(3) for any $a,b \in a$, we have $a \leq b$ or $b \leq a$

Ordered Field
$$\mathbb{Q}$$
: means the field structure $(+, -, \cdot, ./)$
is compatible with (\leq) .
(a) if $a \leq b$, then $a + c \leq b + c$ for all $c \in \mathbb{Q}$.
(b) if $a \geq 0$, and $b \geq 0$, then $a \cdot b \geq 0$.

What's lacking about Q?
There are cartain gaps in Q: (1). for example. I the equation

$$\chi^2 = 2$$
 cannot be solved in Q.
(2) for a bounded subset in Q, call it E, it may not
have a "most economical" or "sharpest" upper bound in Q.

$$\underline{e.\mathfrak{K}}: E = \left\{ x \in \mathbb{R} \right\} \quad \mathfrak{X}^{2} < 2 \right\}.$$

$$\underbrace{ \begin{array}{c} -J^{2} \\ (1111-1) \\ (1111-1$$