1. Rational zero Theorem (Ross \$2).

It.
Def: an integer coeff polynomial in x is

$$
\begin{array}{ll}
f(x)=c_{n} \cdot x^{n}+c_{n-1} \cdot x^{n-1}+\cdots+c_{1} \cdot x+c_{0} \quad & c_{n}, \cdots, c_{0} \in \mathbb{Z} . \\
& c_{n} \neq 0
\end{array}
$$

\mathbb{Z}-coff eq. is: $\quad f(x)=0$
one can ask: when does an \mathbb{Z}-coeff eq has roots in \mathbb{Q}.
Fact: a degree n polynomial has n roots in \mathbb{C}.
i.e. $\exists z_{1}, \cdots, z_{n}$. in \mathbb{C}, such that.

$$
f(x)=c_{n}\left(x-z_{1}\right) \cdots\left(x-z_{n}\right)
$$

$$
\left(\begin{array}{c}
\text { it is possible } \\
\text { that some of the } \\
Z_{i} \text { coincide. }
\end{array}\right)
$$

Thu: If a rational number r satisfies the eq.

$$
c_{n} \cdot x^{n}+\cdots+c_{1} x^{\prime}+c_{0}=0 \text {, with } c_{i} \in \mathbb{I}_{1}, c_{n} \neq 0 \text {. }
$$

and $r=\frac{c}{d}$ (where $c_{1} d$ are co-prime integers). Then. C divides. C_{0}, and. d divides. C_{n}.

Ex: (1) $5 x+3=0$,

$$
r=\frac{3}{5} . \quad c=3, \quad d=5
$$

$$
c_{1}=5, \quad c_{0}=3 . \quad \text { yes. } \quad 3 / 3, \quad 5 / 5
$$

Pf: Plug in $x=\frac{c}{d}$, to eq.

$$
C_{n}\left(\frac{c}{d}\right)^{n}+C_{n-1}\left(\frac{c}{d}\right)^{n-1}+\cdots+C_{1}\left(\frac{c}{d}\right)+C_{0}=0
$$

multiply both sides by d^{n}, we get

$$
C_{n} \cdot C^{n}+C_{n-1} \cdot C^{n-1} \cdot d+\cdots+C_{1} \cdot C \cdot d^{n-1}+C_{0} \cdot d^{n}=0
$$

(1)

$$
\begin{aligned}
\because \quad C_{n} \cdot C^{n} & =-\left(C_{n-1} \cdot C^{n-1} \cdot d+\cdots+C_{1} \cdot C \cdot d^{n-1}+C_{0} \cdot d^{n}\right) \\
& =-d\left(C_{n-1} \cdot C^{n-1}+\cdots+C_{0} \cdot d^{n-1}\right)
\end{aligned}
$$

$\therefore d$ divides $C_{n} \cdot C^{n}$
since d and c are coprime., d does not divide C^{n}
$\therefore d$ has to divide C_{n}.
(2)

$$
\begin{aligned}
C_{0} \cdot d^{n} & =-\left(C_{n} \cdot C^{n}+C_{n-1} \cdot C^{n-1} \cdot d+\cdots+C_{1} \cdot C \cdot d^{n-1}\right) \\
& =-C \cdot\left(C_{n} \cdot C^{n-1}+C_{n-1} \cdot C^{n-2} \cdot d+\cdots+C_{1} \cdot d^{n-1}\right)
\end{aligned}
$$

by similar reasoning, $\quad c \mid C_{0}$.

Using this rational zee the: we can answer questions claim: ($E \times 4$).
$\sqrt[3]{6}$ is not rational number.
$\Leftrightarrow x^{3}-6=0$ does not have rational roots.
Pf: The only possible rational sol'n $r=\frac{c}{d}$, needs

$$
c|6, \quad d| 1, \quad \therefore \text { take } d=1, \quad c= \pm 1, \pm 2, \pm 3, \pm 6 \text {. }
$$

one can test all of them, they don't solve the Eq \therefore there is mo sol'n in \mathbb{Q}.
\mathbb{R}
Historical construction of \mathbb{R} from \mathbb{Q} :
(1) Dedekind cut: $\quad(\mathbb{Q}$: if $\sqrt{2} \notin \mathbb{Q}$, how to "save the
info" of $\sqrt{2}$?).
$C_{\sqrt{2}}=\{r \in \mathbb{Q} \mid \quad r<\sqrt{2}\}$. a subset.
moral: for each $x \in \mathbb{R}, \quad$ consider $C_{x}=\{r \in \mathbb{Q} \mid r<x\}$. one can define addition, multiplication on these subsets. C_{x}.
(2). Sequence in Q i.e. to use a seq of rational numbers to "approximate" a real number. e.g. $\sqrt{2}$ car be approx by

$$
1,1.4,1.41,1.14, \cdots \cdots \cdot .
$$

problem here: (1) given any real number, how do you get such a seq ?
(2) how to tell if 2 different sequences approx the same real number.

$$
\left.\begin{array}{rlll}
(\text { e.g. } 1 & \leftarrow 1.1,1.01,1,001, \ldots \\
1 & \leftarrow 0.9,0.99,0.999, \ldots \\
\text { or } 1 & \leftarrow 1,1,1,1, \ldots
\end{array}\right)
$$

the 3 sequences all have the same limit (what is a limit?)

- Given the existence of \mathbb{R} axiom we have properties (axioms) of \mathbb{R}.
- completeness of \mathbb{R} :

Given any subset $E \subset \mathbb{R}$, bounded above, there exist a unique. $\quad r \in \mathbb{R}$
(1) r is an upper bound of E
bounded above: $\exists a \in \mathbb{R}$, sot. for any $x \in E$, we have $x \leqslant a$.
(2) for any other upper hound α, we have $\gamma \leqslant \alpha$.
r is called the least upper hound, of $E, \quad r=\sup E$.
(i.e. $\sup (E)$ is well defined for subset E that's bounded $\begin{array}{r}\text { above }\end{array}$.

Ex: $\quad \sup (\underline{[0,1]})=1 . \quad \sup (\underline{(0,1)})=1$.

$$
\sup \left(\left\{r \in \mathbb{Q} \mid r^{2}<2\right\}\right)=\sqrt{2}
$$

Con: (Archaemedian property): For any $r \in \mathbb{R}, r>0$, $\exists n \in \mathbb{N}, \quad$ such that $\quad n \cdot r>1 . \Leftrightarrow r>\frac{1}{n}$.

$+\infty,-\infty$ i notations.

- with there symbol introduced, we can say $\sup (\mathbb{N})=+\infty \Leftrightarrow \mathbb{N}$ is not bounded above.
- $+\infty,-\infty$ are not real numbers. They have partly the operations that \mathbb{R} has. i.e.

$$
3 \cdot(+\infty)=+\infty, \quad(-3) \cdot(+\infty)=-\infty,
$$

hut $(+\infty)+(-\infty) \neq$ NAN. (0) $\cdot(+\infty)=$ not defined.

Sequemes and Limits:
note, use (\cdots), not $\{-\}$

- we only care about the "eventual behavior" of a seq.
- Def: A seq $\left(a_{n}\right)$ converge to $a \in \mathbb{R}$, if
$\forall \varepsilon>0, \exists N \in \mathbb{N}$, such that,$\forall n>N$, $\left|a_{n}-a\right|<\varepsilon$.

