Math 104. Lee 3 Sequence and Limits.
Ross $\S 9$.
Recall last time:
Def: 1. A seq of real numbers $\left(a_{n}\right)$ converges to $a \in \mathbb{R}$, if for any $\varepsilon>0$, there exists N (positive integer). such that for all $n>N$, we have $\left|a_{n}-a\right|<\varepsilon$.

Today: properties for convergent seq.
The 9.1 Convergent sequences are bounded.
$\left(\begin{array}{cc}\text { recall, } a \operatorname{seq}\left(a_{n}\right) \text { is bounded, if } \exists M>0, & \text { such that } \\ \left|a_{n}\right| \leqslant M & \text { for all } n \\ M & \left.a_{1}, a_{2},\right)_{M}\end{array}\right)$
Pf: let $\left(a_{n}\right)$ be a convergent sequence, that converge to $a \in \mathbb{R}$.
Let $\varepsilon=1$, then by def of convergence, there exists $N>0$, sit.

$$
\forall n>N, \quad\left|a_{n}-a\right|<1 . \quad \Leftrightarrow \quad a-1<a_{n}<a+1 \quad \forall n>N
$$

Let $M_{1}=\max \left\{a_{1}, a_{2}, \cdots, a_{N}\right\}$.

$$
\begin{aligned}
& M_{2}=\max \{|a-1|,|a+1|\} . \\
& M=\max \left\{M_{1}, M_{2}\right\} .
\end{aligned}
$$

Thus, if $n \leqslant N$, we have $\left|a_{n}\right| \leqslant M_{1}$
if $n>N$, we have $\left|a_{n}\right| \leqslant M_{2}$
thus. $\quad \forall n, \quad\left|a_{n}\right| \leqslant \max \left\{M_{1}, M_{2}\right\}=M$.

Moral : one can deal with the first few term of a seq
easily, it is the "tail of the seq" that matters.

Operations on convergent seq:
$(\mapsto) \forall c \in \mathbb{R}$. $\quad \forall$ convergent seq $a_{n} \rightarrow a$., we have.

$$
c \cdot a_{n} \rightarrow c \cdot a .
$$

pf: If $c=0$, the result is obvious.
If $c \neq 0$, we need to show for any $\varepsilon>0, \exists N>0$.
s.t. $\quad \forall n>N . \quad\left|C \cdot a_{n}-c a\right|<\varepsilon$. But, this is equivalent to $\quad|c| \cdot\left|a_{n}-a\right|<\varepsilon$.

$$
\Leftrightarrow \quad\left|a_{n}-a\right|<\frac{\varepsilon}{|c|}
$$

Now, let $\varepsilon^{\prime}=\varepsilon /|c|$, and using convergence of $a_{n} \rightarrow a$, we have $N>0$. sit. $\quad \forall n>N, \quad\left|a_{n}-a\right|<\varepsilon^{\prime}=\frac{\varepsilon}{|c|}$. This gives us the desired N.
(2) If $a_{n} \rightarrow a, \quad b_{n} \rightarrow b$, then $a_{n}+b_{n} \rightarrow a+b$.

Pf: We want to show, $\forall \varepsilon>0, \exists N$. sit.

$$
\begin{equation*}
\forall n>N, \quad\left|a_{n}+b_{n}-(a+b)\right|<\varepsilon . \tag{*}
\end{equation*}
$$

The requirement $\Leftrightarrow\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right|<\varepsilon$
$\because \quad\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \leqslant\left|a_{n}-a\right|+\left|b_{n}-b\right|$ by triangle inequality
\therefore
(*)

$$
\begin{aligned}
& \Leftarrow \quad\left|a_{n}-a\right|+\left|b_{n}-b\right|<\varepsilon . \\
& \Leftarrow \quad \begin{cases}\left|a_{n}-a\right|<\varepsilon / 2 & (* *) \\
\left|b_{n}-b\right|<\varepsilon / 2 . & (* * *) .\end{cases}
\end{aligned}
$$

By convergences of a_{n} and $b_{n}, \exists N_{1}, N_{2}$., sit.

$$
\forall n>N_{1}, \quad\left|a_{n}-a\right|<\varepsilon / 2, \quad ; \quad \forall n>N_{2}, \quad\left|b_{n}-b\right|<\varepsilon / 2 .
$$

Take $N=\max \left\{N_{1}, N_{2}\right\}$, then $\forall n>N . \quad(* * *)$ is satisfied. hence (*) is satisfied.

Cor: if $a_{n} \rightarrow a, b_{n} \rightarrow b$, then $a_{n}-b_{n} \rightarrow a-b$.
Pf: let $c_{n}=(-1) \cdot b_{n}$, then $c_{n} \rightarrow-b$.

$$
\stackrel{a_{n}-b_{n}}{n} a_{n}+c_{n} \rightarrow a-b
$$

(3) If $a_{n} \rightarrow a, \quad b_{n} \rightarrow b$, then $a_{n} \cdot b_{n} \rightarrow a \cdot b$.

Pf: WTS: $\forall \varepsilon>0, \exists N$ sit. $\forall n>N$.

$$
\begin{equation*}
\left|a_{n} b_{n}-a b\right|<\varepsilon \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|a_{n}\left(b_{n}-b\right)+a_{n} \cdot b-a b\right| \\
& =\left|a_{n} \cdot\left(b_{n}-b\right)+\left(a_{n}-a\right) b\right| \\
& \leqslant\left|a_{n}\left(b_{n}-b\right)\right|+\left|\left(a_{n}-a\right) b\right| \\
& \leqslant\left|a_{n}\right| \cdot\left|b_{n}-b\right|+\left|a_{n}-a\right| \cdot|b|
\end{aligned}
$$

$\because \quad a_{n} \rightarrow a \quad \therefore a_{n}$ is bounded $\therefore \exists M_{1}>0$. sit. $\left|a_{n}\right| \leqslant M_{1} \quad \forall n$.

$$
\begin{aligned}
& \quad \leqslant \begin{array}{l}
M_{1}\left|b_{n}-b\right|+|b| \cdot\left|a_{n}-a\right| . \\
M_{1}\left|b_{n}-b\right|<\frac{\varepsilon}{2} \\
|b| \cdot\left|a_{n}-a\right|<\frac{\varepsilon}{2} .
\end{array} \quad(* *) .
\end{aligned}
$$

Since $a_{n} \rightarrow a$, let $\varepsilon_{1}=\frac{\varepsilon}{2} /|b|$, then $\exists N_{1}$, sit. $\forall n>N_{1}$,

$$
\left|a_{n}-a\right|<\varepsilon_{1} \quad \Leftrightarrow \quad|b| \cdot\left|a_{n}-a\right|<\frac{\varepsilon}{2}
$$

Since $b_{n} \rightarrow b$, let $\varepsilon_{2}=\frac{\varepsilon}{2} / M_{1}$. then $\exists N_{2}$, sit $\forall n>N_{2}$,

$$
\left|b_{n}-b\right|<\varepsilon_{2} \quad \Leftrightarrow \quad M_{1} \cdot\left|b_{n}-b\right|<\frac{\varepsilon}{2_{1}}
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$, thus for all $n>N$, we have $(* *)$ holds, hence (*) holds.
(4). If $a_{n} \rightarrow a$, and $a_{n} \neq 0 \quad \forall n$, and $a \neq 0$, then $\quad \frac{1}{a_{n}} \rightarrow \frac{1}{a}$.
(note, $a_{n} \neq 0$ does not imply. $a \neq 0$,

$$
\text { ex. } a_{n}=\frac{1}{n}, \quad a=0
$$

Pf: WTS, $\forall \varepsilon>0, \exists N$, sit. $\forall n>N$.

$$
\begin{gather*}
\left|\frac{1}{a_{n}}-\frac{1}{a}\right|<\varepsilon \tag{*}\\
\left|\frac{1}{a_{n}}-\frac{1}{a}\right|=\left|\frac{a-a_{n}}{a \cdot a_{n}}\right|=\frac{\left|a-a_{n}\right|}{|a| \cdot\left|a_{n}\right|}
\end{gather*}
$$

Claim: $\exists c>0$, such that $\left|a_{n}\right|>c \quad \forall n$.
Let $\varepsilon^{\prime}=|a| / 2$, then $\exists N^{\prime}$, sit.

$$
\begin{aligned}
\forall n>N^{\prime}, & \\
& \left|a_{n}-a\right|<\varepsilon^{\prime}=|a| / 2 . \\
\Leftrightarrow & -|a| / 2<a_{n}-a<|a| / 2 \\
\Leftrightarrow & \frac{a-|a| / 2<a_{n}<a+|a| / 2}{\left|a_{n}\right|>|a| / 2}
\end{aligned}
$$

$\begin{aligned} & \text { If } a>0, \text { then } \quad|a|=a . \\ & \frac{1}{2}|a|<a_{n}<\frac{3}{2}|a|\end{aligned}$
If $a<0$, then $a=-|a|$.

$$
\begin{aligned}
& -\frac{3}{2}|a|<\underbrace{a_{n}<-|a|+\frac{|a|}{2}=-\frac{1}{2}|a|}_{n} \\
& \Rightarrow\left|a_{n}\right|>\frac{1}{2}|a| .
\end{aligned}
$$

Let $C_{1}=\min \left\{\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{N}\right|\right\} .>0$.
let $c=\min \left\{c_{1},|a| / 2\right\}$. finish proof of claim.

Thus. $\quad \frac{\left|a_{n}-a\right|}{|a| \cdot\left|a_{n}\right|}<\frac{\left|a_{n}-a\right|}{|a| \cdot c}$

Hence $\quad(*) \Leftarrow \quad \frac{\left|a_{n}-a\right|}{|a| \cdot c}<\varepsilon \quad(* *)$.
and (**) can be achieved using $a_{n} \rightarrow a_{\text {. }}$.

Con: if $a_{n} \rightarrow a, \quad b_{n} \rightarrow b, \quad$ and $\quad b_{n} \neq 0, \quad b \neq 0$, then $\quad \frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}$.

Pf: $\quad \frac{a_{n}}{b_{n}}=a_{n} \cdot\left(\frac{1}{b_{n}}\right) . \quad \because \frac{1}{b_{n}} \rightarrow \frac{1}{b} \quad$ by Lemma.
$\therefore a_{n} \cdot\left(\frac{1}{b_{n}}\right) \rightarrow a \cdot \frac{1}{b} \quad(\because$ product of convergat seq still converge).

The 9.7: (Useful Results).
(1) $\lim _{n \rightarrow \infty} \frac{1}{n^{P}}=0$

$$
\forall p>0 .
$$

(2) $\lim _{n \rightarrow \infty} a^{n}=0 . \quad \forall|a|<1$
(3) $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$.
sketch: let $S_{n}=n^{\frac{1}{n}}-1$, thus $s_{n} \geqslant 0 \quad \forall n$ positive int

$$
1+s_{n}=n^{\frac{1}{n}} \Leftrightarrow \quad\left(1+s_{n}\right)^{n}=n \text {. }
$$

using binomial expansion.

$$
\begin{aligned}
& 1+n \cdot s_{n}+\frac{n(n-1)}{2} S_{n}^{2}+\cdots \cdots=n \\
\Rightarrow & \frac{n(n-1)}{2} \cdot s_{n}^{2} \leqslant n . \\
\Rightarrow & \\
& s_{n}^{2} \leq \frac{2}{n-1}
\end{aligned}
$$

Thus $\quad s_{n} \rightarrow 0$ as $n \rightarrow \infty$

$$
\begin{aligned}
& \text { (4). } \lim _{n \rightarrow \infty} a^{\frac{1}{n}}=1 \quad \text { for all } \quad a>0 . \\
& \lim _{n} a^{\frac{1}{n}}=a^{\lim \frac{1}{n}}=a^{0}=1
\end{aligned}
$$

Ross Ex
Discussion. $9.2,9.9(c), 9.15$.

