Math 104. Lec 3 Sequence and Limits.
Ross 59.
Recall (ast time:
Def: 1. A seq of real numbers (an) converges to a ER,
if for any 2>0, there exists N (positive integer), such that
for all n 7 N, we have
$$|an-a| < 2$$
.
Today: properties for convergent seq.
The 9.1 Convergent sequences are bounded.

$$(\operatorname{recall}, \operatorname{aseq}(\operatorname{Gn}))$$
 is bounded, if $\exists M \ge 0$, such that
 $|\operatorname{Gn}| \le M$ for all n
 $-M$ M

Moral: one can deal with the first few term of a seq

(2) If
$$a_n \rightarrow a$$
, $b_n \rightarrow b$, then $a_n + b_n \rightarrow a + b$.

By convergences of an and
$$bn$$
, $\exists N_1, N_2, s.t.$
 $\forall n = N_1, [a_n - a] < \frac{5}{2}, s$ $\forall n = N_2, [b_n - b] < \frac{5}{2}.$

Take N= max \$N1, N23, then Un7N. (***) is setisfied. hence (*) is satisfied.

(3) If
$$a_n \rightarrow a$$
, $b_n \rightarrow b$, then $a_n \cdot b_n \rightarrow a \cdot b$.

$$|a_{n}b_{n}-ab| = |a_{n}(b_{n}-b) + a_{n}b - ab|$$

$$= |a_{n}(b_{n}-b) + (a_{n}-a)b|.$$

$$\leq |a_{n}(b_{n}-b)| + |a_{n}-a|\cdot|b|.$$

$$(a_{n} \rightarrow a \quad a_{n} \text{ is bounded } \quad \exists M_{1} \neq 0. \text{ s.t. } |a_{n}| \in M_{1} \quad \forall n.$$

$$(+) \leftarrow \begin{cases} M_{1} \mid b_{n}-b| + |b| \cdot |a_{n}-a|.\\ \|b\| \cdot \|b\| - b\| \leq \frac{\varepsilon}{2}. \end{cases}$$

$$(+ +).$$

Since $a_n \rightarrow a$, let $\varepsilon_1 = \frac{\varepsilon}{2}/|b|$, then $\exists N_1$, s.t. $\forall n \neg N_1$, $|a_n - a| < \varepsilon_1 \iff |b| \cdot |a_n - a| < \frac{\varepsilon}{2}$.

Since $bn \rightarrow b$, let $\mathcal{E}_{z} = \frac{\mathcal{E}}{2} / M_{1}$. then $\exists N_{z}$, set $\exists n \neg N_{z}$, $|b_{n}-b| < \mathcal{E}_{z} \iff M_{1} \cdot |b_{n}-b| < \frac{\mathcal{E}}{2}$.

 \Box

Let N= max & NI, NZZ, thus for all n7N, we have (***) holds, hence (*) holds.

(4). If
$$a_{n} \rightarrow a$$
, and $a_{n} \neq 0 \quad \forall n$, and $a \neq 0$,
then $\frac{1}{a_{n}} \rightarrow \frac{1}{a}$.
(note, $a_{n} \neq 0$ does not imply. $a \neq 0$,
 e_{X} . $a_{n} = \frac{1}{h}$., $a = 0$.
Pf: WTS. $\forall \geq >0$, $\exists N'$, s.t. $\forall n > N$.
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| \leq \sum$. (*).
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a - a_{n}|}{|a| \cdot |a_{n}|}$
 $\left| \frac{1}{a_{n}} - \frac{1}{a} \right| = \left| \frac{a - a_{n}}{a \cdot a_{n}} \right| = \frac{|a|}{a} \left| \frac{a}{a_{n}} \right|$
 $\left| \frac{a}{a_{n}} - \frac{a}{a} \right| = \frac{|a|}{a} \left| \frac{a}{a_{n}} - \frac{a}{a} \right|$
 $\left| \frac{a}{a_{n}} - \frac{a}{a} \right| = \frac{|a|}{a} \left| \frac{a}{a_{n}} - \frac{a}{a} \right|$
 $\left| \frac{a}{a_{n}} - \frac{a}{a} \right|$
 $\left| \frac{a}{a_{n}} - \frac{a}{a} \right| = \frac{|a|}{a} \left| \frac{a}{a_{n}} - \frac{a}{a} \right|$
 $\left| \frac{a}{a_{n}} - \frac{a}{a} \right|$

Thus. $\frac{|a_n-a|}{|a|\cdot|a_n|} < \frac{|a_n-a|}{|a|\cdot c.}$

Hence $(\bigstar) \Leftarrow \frac{|a_n - a|}{|a| \cdot c} < \varepsilon$ (\bigstar) and $(\bigstar) \Leftrightarrow \frac{|a_n - a|}{|a| \cdot c} < \varepsilon$ (\bigstar) and (\bigstar) and (\bigstar) and (\bigstar) (\bigstar) (

$$\frac{T_{hm} 9.7}{(1)} : (Useful Results).$$

$$(1) \lim_{n \to \infty} \frac{1}{n^p} = 0 \qquad \forall p > 0.$$

(z)
$$\lim_{n \to \infty} a^n = 0$$
, $\forall |a| < j$

$$\begin{array}{ccc} (3) & \lim_{n \to \infty} n^{\frac{1}{n}} = 1. \end{array}$$

sketch: let
$$S_n = n^{\frac{1}{n}} - 1$$
, thus $S_n \ge 0$ $\forall n$ positive
integer.
 $|+S_n = n^{\frac{1}{n}} \Leftrightarrow (|+S_n)^n = \mathbb{N}.$

using binomial expansion. $1+N\cdot Sn + \frac{n(n-1)}{2}S_n^2 + \cdots = n$ $\Rightarrow \qquad \frac{n(n-1)}{2}\cdot S_n^2 \leq n$, $\Rightarrow \qquad S_n^2 \leq \frac{2}{n-1}$ Thus $S_n \Rightarrow 0$ as $n \Rightarrow m$

(4).
$$\lim_{n \to \infty} \alpha^{\frac{1}{n}} = 1$$
 for all $\alpha > 0$.
" $\lim_{n \to \infty} \alpha^{\frac{1}{n}} = \alpha^{\lim_{n \to \infty} \frac{1}{n}} = \alpha^{\circ} = 1$."

Ross Ex

Discussion. 9.2, 9.9(0), 9.15.