$\$ 10$ in Ross: monotone seq \& limsup. liming.

- Def $\left(\lim S_{n}=+\infty\right)$. A sequence $\left(S_{n}\right)$ is said to "diverge to $+\infty$ ", if for any $M \in \mathbb{R}$., there is an N. sit.

- Recall:
- Def: (sup of a set). Given a ${ }_{\text {suse }}^{\text {set }} S \subset \mathbb{R}$. If S is not bounded above, then $\sup S=+\infty$. If S is bounded above, then sup S is E number γ, that is an upper bound, and for any $\varepsilon>0$, there is some $s \in S$, that $S>\gamma-\varepsilon(\gamma-\varepsilon$ is not an upper bound of $S)$.
- Def: (value set" of a sequence). If $\left(S_{n}\right)_{n=1}^{\infty}$ is a sequence. then $\left\{S_{n}\right\}_{n=1}^{\infty}$, the subset of \mathbb{R} that $\left(S_{n}\right)$ values $i n$, is called the value set.

Ex: $\quad\left(S_{n}\right)=1,2,1,2,1,2, \ldots$

$$
\left\{S_{n}\right\}_{n=1}^{\infty}=\{1,2\} .
$$

" journey"
"foot print"

$$
\begin{aligned}
& \left(S_{n}\right)^{\prime}=1,1,2,2,1,1,2,2, \ldots \\
& \left\{S_{n}\right\}_{n=1}^{\infty}=\{1,2\} .
\end{aligned}
$$

$$
\begin{aligned}
& \left(S_{n}\right)=1,2,3,4, \ldots \\
& \left\{S_{n}\right\}_{n=1}^{\infty}=\{1,2,3,4, \ldots\} .
\end{aligned}
$$

- Def (monotone seq).
- A seq $\left(a_{n}\right)_{n=1}^{\infty}$ is monotonically increasing, if

$$
a_{n+1} \geqslant a_{n} \quad \forall n=1,2, \ldots
$$

- A seq $\left(a_{n}\right)$ is monotonically decreasing, if

$$
a_{n+1} \leqslant a_{n} \quad \forall n .
$$

Ex: a $\left(a_{n}\right)=a$, constant seq is monotone increasing \& decreasing

* $\quad\left(a_{n}\right)=1,2,3, \cdots$, is increasing
- $\left(a_{n}\right)=-\frac{1}{n}$
$n \geqslant 1 \quad \lim a_{n}=0$

increasing, and bounded above.
(hence bounded below).
Thm: A bounded monotone sequence is convergent.

Pf: (only prove for increasing seq). Let $\left(a_{n}\right)$ be a bounded monotone seq. Let $\gamma=\sup \underbrace{\left\{a_{n}\right\}_{n=1}^{\infty}}_{a \text { set }}\left(=\sup _{n} a_{n}\right)$
Then. $a_{n} \leqslant \gamma \quad \forall n$.

- for any $\varepsilon>0, \exists a_{n_{0}}$, s.t. $a_{n_{0}}>\gamma-\varepsilon$.

Thus, for any $\varepsilon>0$, let $N=n_{0}$ (n_{0} defined above.). then for any $n>N$, we have

$$
\gamma-\varepsilon<a_{n_{0}} \leq a_{n} \leq \gamma
$$

thus

$$
\left|a_{n}-\gamma\right|<\varepsilon .
$$

Hence $\quad \lim a_{n}=r$.

Ex: (Recursively defined seq $)$:
let S_{1} be any positive number. Let

$$
\begin{equation*}
S_{n+1}=\frac{S_{n}^{2}+5}{2 S_{n}} \quad \forall n \geqslant 1 . \tag{*}
\end{equation*}
$$

we want show $\lim S_{n}$ exists and find it.

Rime: ") if we assume $\lim S_{n}$ exist, call it S, then S satisfies.

$$
\begin{aligned}
& \text { isfies. } \\
& (* *)
\end{aligned} \quad S=\frac{s^{2}+5}{2 s}
$$

\because we can apply the operation $\lim _{n \rightarrow \infty}(\cdots)$ to both sides of $(*)$

$$
(* *) \quad \Rightarrow \quad 2 s^{2}=s^{2}+5 \quad \Rightarrow \quad s^{2}=5 \quad \Rightarrow
$$

S can be $\pm \sqrt{5}$. Since $S n$ às a positive seq. $\lim S_{n}$ can only be $\geqslant 0$, thus S can only be $\sqrt{5}$.
(2) To show $\lim \sin$ exists, we only need to show S_{n} is bounded and monotone.

Here is a trick: . let $f(x)=\frac{x^{2}+5}{2 x}$, then $S_{n+1}=f\left(S_{n}\right)$.

- Consider the graph of f, i.e. $y=f(x)$.
- consider the diagonal, i.e. $y=x$.

$$
\left(s_{1}, s_{1}\right), y=x . \quad y=f(x)
$$

(1). if $S_{1}>\sqrt{5}$, we should try to prove.

$$
\sqrt{5}<\cdots s_{3}<s_{2}<s_{1}
$$

(2). if $0<S_{1}<\sqrt{5}$, then we have $\delta_{2}>\sqrt{5}$., we can consider $\left(S_{n}\right)_{n=2}^{\infty}$, that reduces to case (1).

- If $\left(S_{n}\right)$ is unbounded and increasing, then $\lim S_{n}=+\infty$. decreasing, then $\lim S_{n}=-\infty$.
§ \liminf and \limsup. of a sequence.
- Def (\limsup). Let $\left(S_{n}\right)_{n=1}^{\infty}$ be a sequence,

$$
\limsup _{n \rightarrow \infty} S_{n}:=\lim _{n \rightarrow \infty}\left(\sup \left\{S_{m}\right\}_{m=n}^{\infty}\right)
$$

notation

- $\left(S_{n}\right)_{n=N}^{\infty}$ is called a "tail of the seq $\left(S_{n}\right)$ " starting at N.

$$
\begin{aligned}
& \cdot A_{N}=\sup \left\{S_{n}\right\}_{n=N}^{\infty}=\sup _{n \geqslant N} S_{n} . \\
& \cdot \lim \sup S_{n}=\lim _{N \rightarrow \infty} A_{N} .
\end{aligned}
$$

Ex: (1) $\quad\left(S_{n}\right)=1,2,3,4,5, \cdots$

$$
\begin{aligned}
& A_{1}=\sup _{n \geqslant 1} S_{n}=+\infty \\
& A_{2}=\sup _{n \geqslant 2} S_{n}=+\infty \\
& \limsup s_{n}=\lim A_{N}=+\infty
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \left(s_{n}\right)=1-\frac{1}{n} . \\
& A_{1}=\sup _{n \geqslant 1} s_{n}=1 \\
& A_{2}=\sup _{n \geqslant 2} s_{n}=1 \\
& \vdots A_{n}=1 . \\
& \limsup s_{n}=\lim A_{N}=1
\end{aligned}
$$

(actually, for any monotone increasing seq, $\limsup S_{n}=\sup S_{n}=A_{1}$)
(3)

$$
\begin{aligned}
S_{n} & =1+\frac{1}{n} \\
\left(S_{n}\right) & =2,1+\frac{1}{2}, 1+\frac{1}{3}, 1+\frac{1}{4}, \cdots \\
A_{1} & =\sup \left\{2,1+\frac{1}{2}, 1+\frac{1}{3}, \cdots\right\}=2 \\
A_{2} & =\sup \left\{1+\frac{1}{2}, 1+\frac{1}{3}, 1+\frac{1}{4}, \cdots\right\}=1+\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
: A_{n} & =S_{n}=\left(+\frac{1}{n}\right) \\
\limsup S_{n} & =\lim \left(1+\frac{1}{n}\right)=1 .
\end{aligned}
$$

Lemma: $\quad A_{n}=\sup _{m \geqslant n} S_{m}$ forms a decreasing. sequence. if: since $\left\{S_{m}\right\}_{m=n}^{\infty} \supset\left\{S_{m}\right\}_{m=n+1}^{\infty}$, thus.

$$
\begin{gathered}
\sup \left\{S_{m}\right\}_{m=n}^{\infty} \geqslant\left\{S_{m}\right\}_{m=n+1}^{\infty}, \\
A_{n} \geqslant A_{n+1} .
\end{gathered}
$$

Con: $\quad \lim _{n \rightarrow \infty} A_{n}=\inf \left\{A_{n}\right\}_{n=1}^{\infty}\left(=\inf f_{n} A_{n}\right)$.
(4). $\quad S_{n}=(-1)^{n} \cdot \frac{1}{n}$.

$$
s_{1}=-1, \quad S_{2}=\frac{1}{2}, \quad S_{3}=-\frac{1}{3}, \cdots
$$

$$
A_{1}=\sup _{n \geqslant 1}\left(S_{n}\right)=S_{2}=\frac{1}{2}
$$

$$
\begin{aligned}
& A_{2}=\frac{1}{2}, \quad A_{3}=S_{4}=\frac{1}{4}, \ldots \\
& \left(A_{n}\right)=\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6},
\end{aligned}
$$

A_{n} is like the "upper envelope".
$\limsup S_{n}=\lim A_{n}=0$.

