\$10 in Ross: monotone seq & limsup, liminf.

• <u>Def</u> (lim $s_n = +\infty$). A sequence (Sn) is said to "diverge to $+\infty$ ", if for any MEIR., there is an N. s.t.

· Recall:

• Def: (sup of a set). Given a set $S \subset R$. If S is not bounded above, then $\sup S = +\infty$. If S is bounded above, then $\sup S$ is $\stackrel{\text{the}}{=}$ number T, that is an upper bound, and for any $\varepsilon > 0$, there is some $s \in S$, that $s > T - \varepsilon$ ($T - \varepsilon$ is not an upper bound of S).

• Def: ("value set" of a sequence). If $(S_n)_{n=1}^{\infty}$ is a sequence. then $\frac{\sum S_n \frac{2}{N-1}}{N-1}$, the subset of R that (S_n) values in, is called the value set.

$$\underline{Ex} : \bullet (Sn) = 1, 2, 1, 2, 1, 2, ---$$
 "journey"
$$\{Sn_{n=1}^{\infty} = \{1, 2\}.$$
 "foot print"

• $(S_n) = 1, 1, 2, 2, 1, 1, 2, 2, -- S_{S_n} = \{1, 2\}.$

$$(S_n) = 1, 2, 3, 4, \dots$$

$$S_n S_{n_n}^{\infty} = \{1, 2, 3, 4, \dots, \}$$

$$\frac{1}{3} \sum_{n_n}^{\infty} \sum_{n_n}^{\infty} \{1, 2, 3, 4, \dots, \}$$

$$\frac{1}{3} \sum_{n_n}^{\infty} \sum_$$

$$\gamma - \varepsilon < \alpha_{n_0} \le \alpha_n \le \gamma$$

thus $|\alpha_n - \gamma| < \varepsilon$.
Hence $\lim_{n \to \infty} \alpha_n = \gamma$.

Ex: (Recursively defined seq.);
Let S₁ be any positive number. Let
(+)
$$S_{n+1} = \frac{S_n^2 + 5}{2 S_n}$$
 $\forall n=1$.
We went show lim S_n exists and find it.

Ruk: (1) if we assume lim Sn exist, call it S, then
S satisfies.

$$(XX)$$
 S = $\frac{S^2 + 5}{2S}$.
: we can apply the operation lim (---) to both sides of (x)

$$(**) \Rightarrow 2S^2 = S^2 + 5 \Rightarrow S^2 = 5 \Rightarrow$$

S can be $\pm \sqrt{5}$. Since Sn as a positive seq.
lim Sn can only be $\equiv 0$, thus S can only be $\sqrt{5}$.

Here is a trick: Let
$$f(x) = \frac{x^2 + 5}{2x}$$
, then $S_{n+1} = f(S_n)$.
Consider the graph of f , i.e. $Y = f(x)$.
Consider the diagonal, i.e. $Y = x$.
 $S_{1}(S_{1},S_{1}) = y = x$.

• If
$$(S_n)$$
 is unbounded and increasing, then $\lim_{n \to \infty} S_n = +D$.

$$\frac{\text{Def}(\limsup_{n \to \infty})}{\lim_{n \to \infty}} \quad \text{Let} \quad (S_n)_{n=1}^{\infty} \quad \text{Je a sequence,}} \quad \lim_{n \to \infty} \left(\sup_{n \to \infty} \left\{S_m\right\}_{m=n}^{\infty}\right)$$

notation

$$\mathcal{D}$$
 \mathcal{D} : $(S_n)_{n=N}$ is called a "tail of the seq (S_n) "
starting at N.

9

•
$$A_N = \sup \{S_n\}_{n=N}^{\infty} = \sup_{n>N} S_n$$
.
• $\lim \sup_{N \to \infty} S_n = \lim_{N \to \infty} A_N$.
Ex.: (1) $(S_n) = 1, 2, 3, 4, 5, \dots$
 $S_n \wedge S_n = 1, 2, 3, 4, 5, \dots$
 $A_1 = \sup_{n>1} S_n = \pm \infty$.
 $A_1 = \sup_{n>1} S_n = \pm \infty$.
 $A_2 = \sup_{n>2} S_n = \pm \infty$.
 $\lim_{N \to \infty} S_n = \lim_{n \to \infty} A_N = \pm \infty$.
(2) $(S_n) = 1 - \frac{1}{N}$.
 $A_1 = \sup_{n>2} S_n = 1$.
 $A_2 = \sup_{n>2} S_n = 1$.
 $A_1 = \sup_{n>2} S_n = 1$.
 $A_2 = \sup_{n>2} S_n = 1$.
 $A_1 = I$.
 $\lim_{n \to \infty} S_n = \lim_{n \to \infty} A_N = 1$.
(adually, for any moreform increasing set, limsup $S_n = \sup_{n>2} S_n = A_n$.)
(3) $S_n = 1 + \frac{1}{N}$.
 $(S_n) = \lambda, 1 + \frac{1}{2}, 1 + \frac{1}{2}, 1 + \frac{1}{2}, \dots$ $\beta = \lambda$.
 $A_2 = \sup_{n>2} \beta_{2,1} 1 + \frac{1}{2}, 1 + \frac{1}{2}, \dots$ $\beta = 1 + \frac{1}{2}$.

$$A_n = S_n = (+\frac{1}{n})$$

limsup $S_n = \lim_{n \to \infty} (1+\frac{1}{n}) = 1.$

Lemma:
$$An = \sup_{m \neq n} S_m$$
 forms a decreasing sequence.
 $pf: since \qquad 3Sm_{m=n}^{\infty} \supset SSm_{m=n+1}^{\infty}$, thus.
 $sup SSm_{m=n}^{\infty} \geqslant SSm_{m=n+1}^{\infty}$,
 $i.e. \qquad A_n \not\equiv A_{n+1}$.

$$\underbrace{Con}: \qquad \lim_{n \to \infty} A_n = \inf_{n \to \infty} \widehat{A_n A_n} = \underbrace{Iinf_n A_n}.$$

(4),
$$S_n = (-i)^n \cdot \frac{1}{n}$$
.

$$S_1 = -1, \qquad S_2 = \frac{1}{2}, \qquad S_3 = -\frac{1}{3}, \qquad -\frac{1}{2}$$

 $A_1 = \sup_{n \ge 1} (S_n) = S_2 = \frac{1}{2}$

$$A_2 = \frac{1}{2}, \quad A_3 = 54 = \frac{1}{4}, \quad ---$$

 $(A_n) = \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \quad ---$
 $A_n \quad is \ (ike \ the \ "upper envelope".$

 $\lim_{n\to\infty} S_n = \lim_{n\to\infty} A_n = 0.$