
Math 104 Midterm 2 Apr 5, 2022

Name:

1. (10 points each, 50 points total) True or False. If you think the following
statement is true, give a proof; if you think it is false, give a counter-example.

(a) Let (X, d) be any metric space, then every Cauchy sequence is conver-
gent.

(b) Let f : R ! R be a continuous map. Let (xn), (yn) be two sequences in
R, such that f(xn) = yn. If (yn) converges, then (xn) converges.

(c) For any two sequences of points xn, yn 2 R, where xn are distinct, there
exists a continuous function f(xn) = yn.

(d) Let fn : R ! R be a sequence of uniformly continuous functions. If
fn(x) converges pointwise to f(x), i.e., for any x 2 R, limn fn(x) = f(x),
then f(x) is continuous.

(e) If A,B ⇢ R are bounded subsets, such that for any ✏ > 0, there exists
x 2 A and y 2 B such that |x� y| < ✏, then Ā \ B̄ 6= ;.

2. (15 points) Is the following sequence of functions uniformly convergent on
R?

fn(x) = n ln(1 + x2/n)

where ln is the natural log. You may use Taylor expansion that ln(1 + x) =
x+ · · · .

3. (15 points) Let f : [0, 1] ! R be a continuous function. Prove that
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4. (20 points) Consider R2 be equipped with the following metric

d((x1, y1), (x2, y2)) =

(
|x1 � x2| y1 = y2
|x1|+ |y1 � y2|+ |x2| y1 6= y2

Draw the closed ball centered at (1, 0) with radius 2. (10 points). Is it
compact? Prove your statement.(10 points)
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Hence there is no subsequence that is Cauchy hence

cannot be convergent


