Midterm 2

Name:

Math 104

- 1. (10 points each, 50 points total) True or False. If you think the following statement is true, give a proof; if you think it is false, give a counter-example.
 - (a) Let (X, d) be any metric space, then every Cauchy sequence is convergent.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous map. Let $(x_n), (y_n)$ be two sequences in \mathbb{R} , such that $f(x_n) = y_n$. If (y_n) converges, then (x_n) converges.
 - (c) For any two sequences of points $x_n, y_n \in \mathbb{R}$, where x_n are distinct, there exists a continuous function $f(x_n) = y_n$.
 - (d) Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of uniformly continuous functions. If $f_n(x)$ converges pointwise to f(x), i.e., for any $x \in \mathbb{R}$, $\lim_n f_n(x) = f(x)$, then f(x) is continuous.
 - (e) If $A, B \subset \mathbb{R}$ are bounded subsets, such that for any $\epsilon > 0$, there exists $x \in A$ and $y \in B$ such that $|x y| < \epsilon$, then $\overline{A} \cap \overline{B} \neq \emptyset$.
- 2. (15 points) Is the following sequence of functions uniformly convergent on \mathbb{R} ?

$$f_n(x) = n\ln(1 + x^2/n)$$

where ln is the natural log. You may use Taylor expansion that $\ln(1 + x) = x + \cdots$.

3. (15 points) Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Prove that

$$\lim_{n \to \infty} \frac{1}{2n} \sum_{k=1}^{2n} (-1)^k f(\frac{k}{2n}) = 0$$

4. (20 points) Consider \mathbb{R}^2 be equipped with the following metric

$$d((x_1, y_1), (x_2, y_2)) = \begin{cases} |x_1 - x_2| & y_1 = y_2 \\ |x_1| + |y_1 - y_2| + |x_2| & y_1 \neq y_2 \end{cases}$$

Draw the closed ball centered at (1,0) with radius 2. (10 points). Is it compact? Prove your statement.(10 points)

1. (1) False. X= (0,1) C R with induced metric.

the sequence $an = \frac{1}{n}$ is Cauchy, but not convergent. (there is no element in X that serves as the limit).

(2) False. Let
$$f(x) = \frac{1}{1+x^2}$$
. $\chi_n = n$, $y_n = \frac{1}{1+n^2}$,
then $y_n \rightarrow 1$, but χ_n closes not converge.

(3) False. Let
$$\chi_n = \frac{1}{n}$$
, $y_n = n$.
If there exists a continuous functions $f(x)$, with
 $f(x_n) = y_n$, then $f(\lim_n x_n) = \lim_n f(x_n) = \lim_n y_n = \lim_n y_n$
but the RHS closs converge

(4) false. (don't confuse uniform convergence with
uniform continuity). Say
$$f_n(x) = \frac{1}{1+nx^2}$$
. then
 $f(x) = \lim_{m \to \infty} f_n(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$.

(5) True.
$$\overline{A}$$
 and \overline{B} are bounded and closed subset of
 R , hence compact. For $n=1,2,\cdots$, let $\chi_n \in A$, $\Upsilon_n \in B$
be chosen, sit. $|\chi_n-\Upsilon_n| = \frac{1}{n}$. Pick a subsequence
 χ_{n_K} , such that $\lim_{k} \chi_{n_k} = \chi$ exists. By definition of closure,
 $\chi \in \overline{A}$. $\lim_{k} \Upsilon_{n_k} = \lim_{k} \chi_{n_k} + (\Upsilon_{n_k} - \chi_{n_k}) = \chi + 0 = \chi$.
Hence, $\chi \in \overline{B}$. Thus, $\overline{A} \cap \overline{B} \supset \{\chi\} \neq \phi$.

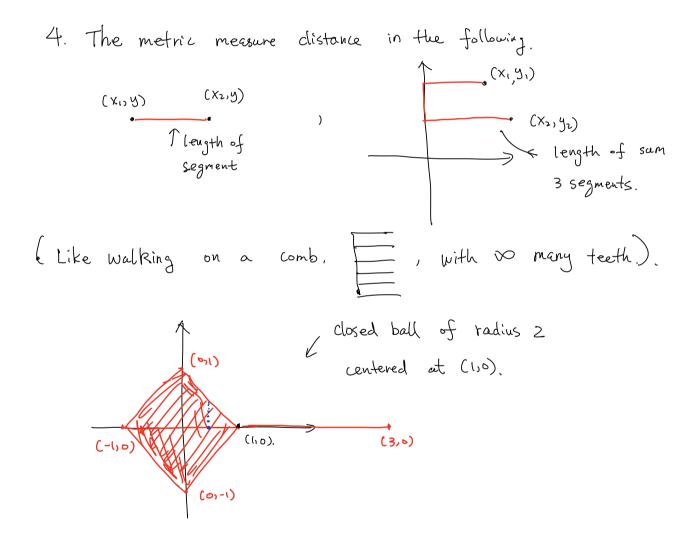
2. Not uniformly continuous.

The pointwise limit exists, $\lim f_n(x) = x^2$. Indeed, for each $x \in \mathbb{R}$, if x = 0, then $\lim_{n} n \ln (H + \frac{x^2}{n}) = \lim_{n \to 1^{-1} n \to 1^{-2}} \frac{1}{n}$ if $x \neq 0$, then $\lim_{n} n \cdot \ln (H + \frac{x^2}{n}) = \lim_{n \to \infty} n \cdot \left[\frac{x^2}{n} + \left(\frac{\ln (H + \frac{x^4}{n}) - \frac{x^2}{n}}{x^2/n} \right) \frac{x^2}{n} \right]$ $= x^2 + x^2 \left[\lim_{n \to \infty} \frac{\ln (H + \frac{x^3}{n}) - \frac{x^2}{n}}{x^2/n} \right] = x^2$. where the last step uses. $\lim_{y \to 0} \frac{\ln (H + y) - y}{y} = 0$. However, $\sup_{n \to \infty} \left[f_n(x) - f(x) \right] = \infty$, here $f_n(x)$ doesn't

However,
$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = VV$$
, hence $f_n(x)$ doesn't
converge to $f(x)$.

3. Since
$$f(x)$$
 on $[o_1 1]$ is continuous, and $[o_1 1]$ is compact,
 $f(x)$ is uniformly continuous. Thus, for any $z > o_1 = \delta$.
 $s.t.$ if $|x_1 - x_2| < \delta$, we have $|f(x_1) - f(x_2)| < \varepsilon$.
For n large enough, sit. $\delta = \frac{1}{2n}$, we have
 $\left|\frac{1}{2n}\sum_{k=1}^{2n}(-1)^k f(\frac{k}{2n})\right| = \frac{1}{2n}\left|-f(\frac{1}{2n}) + f(\frac{2}{2n}) - \cdots\right|$
 $\leq \frac{1}{2n}\left[\left|-f(\frac{1}{2n}) + f(\frac{2}{2n})\right| + \left|-f(\frac{3}{2n}) + f(\frac{4}{2n})\right| + \cdots\right]$
 n pairs

$$\leq \frac{1}{2n} \cdot n \cdot \mathcal{E} \leq \frac{1}{2} \mathcal{E}.$$
Thus, $\lim_{n \to \infty} \left| \frac{1}{2n} \sum_{k=1}^{2n} (-1)^{k} f(\frac{k}{2n}) \right| \leq \frac{1}{2} \mathcal{E}.$ Since $\varepsilon > 0$
is arbitrary, thus. $\lim_{n \to \infty} \left| \frac{1}{2n} \sum_{k=1}^{2n} (-1)^{k} f(\frac{k}{2n}) \right| = 0$



• Not compact. We can produce a sequence without convergent subsequence $(\chi_n, y_n) = (\frac{1}{2}, \frac{1}{2} - \frac{1}{n})$.

$$c((X_n, y_n), (X_m, y_m)) = [X_n] + [X_m] + [Y_n - Y_m]$$

= $\frac{1}{2} + \frac{1}{2} + [\frac{1}{h} - \frac{1}{m}] \ge 1.$

Hence there is no subsequence that is Cauchy, hence cannot be convergents.