Name:

\qquad

In the following \lim means $\lim _{n \rightarrow \infty}$, and \sum_{n} means $\sum_{n=1}^{\infty}$.

1. (10 points each) True or False. If you think the following statement is true, give a proof; if you think it is false, give a counter-example.
(a) Let $A=\sqrt{2} \mathbb{Q}=\{\sqrt{2} x \mid x \in \mathbb{Q}\}$, then for any non-empty open interval $(a, b) \subset \mathbb{R}$, we have $\sup (A \cap(a, b))=b$.
(b) Let $\left(s_{n}\right)$ be a sequence in \mathbb{R}, such that $\lim s_{n}=s \in \mathbb{R}$. Let $t_{n}=s_{n}-s_{2 n}$. Then, $\lim t_{n}=0$.
(c) Let $\left(s_{n}\right)$ be any bounded sequence in \mathbb{R}, and let S be the set of subsequential limits of s_{n}. Then S is countable.
(d) Let $\left(s_{n}\right),\left(t_{n}\right)$ be two bounded sequences in \mathbb{R}, then $\limsup \left(s_{n}+t_{n}\right)=$ $\limsup s_{n}+\limsup t_{n}$
(e) Let $\left(a_{n}\right),\left(b_{n}\right)$ be two bounded non-negative sequences, and $\sum_{n} b_{n}$ is convergent. Then $\sum_{n} a_{n} b_{n}$ is convergent.
(f) If the sequence $\left(s_{n}\right)$ converges to 1 , and t is a subsequential limit of $\left(t_{n}\right)$, then t is a subsequential limit of $\left(t_{n} s_{n}\right)$.
2. (10 points each) Determine if the following limit or series are convergent or not, give your reasoning (you don't have to compute the actual value) (10 points each).
(a) $\sum_{n=0}^{\infty}(-1 / 3)^{n} \sin (n)$
(b) $\lim (\sqrt{n})^{1 / n}$.
(c) $\sum_{n} 1 / \sqrt{n!}$
(d) $\sum_{n}(1 / n)^{1+1 / n}$
