Math 104 Name:

In the following lim means $\lim_{n\to\infty}$, and \sum_n means $\sum_{n=1}^{\infty}$.

- 1. (10 points each) True or False. If you think the following statement is true, give a proof; if you think it is false, give a counter-example.
 - (a) Let $A = \sqrt{2}\mathbb{Q} = \{\sqrt{2}x \mid x \in \mathbb{Q}\}$, then for any non-empty open interval $(a,b) \subset \mathbb{R}$, we have $\sup(A \cap (a,b)) = b$.
 - (b) Let (s_n) be a sequence in \mathbb{R} , such that $\lim s_n = s \in \mathbb{R}$. Let $t_n = s_n s_{2n}$. Then, $\lim t_n = 0$.
 - (c) Let (s_n) be any bounded sequence in \mathbb{R} , and let S be the set of subsequential limits of s_n . Then S is countable.
 - (d) Let $(s_n), (t_n)$ be two bounded sequences in \mathbb{R} , then $\limsup(s_n + t_n) =$ $\limsup s_n + \limsup t_n$
 - (e) Let $(a_n), (b_n)$ be two bounded non-negative sequences, and $\sum_n b_n$ is convergent. Then $\sum_{n} a_n b_n$ is convergent.
 - (f) If the sequence (s_n) converges to 1, and t is a subsequential limit of (t_n) , then t is a subsequential limit of $(t_n s_n)$.
- 2. (10 points each) Determine if the following limit or series are convergent or not, give your reasoning (you don't have to compute the actual value) (10 points each).
 - (a) $\sum_{n=0}^{\infty} (-1/3)^n \sin(n)$
 - (b) $\lim(\sqrt{n})^{1/n}$.

 - (c) $\sum_{n} 1/\sqrt{n!}$ (d) $\sum_{n} (1/n)^{1+1/n}$